3 resultados para Adult benthic populations

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are prokaryotic, plantlike organisms present in lakes, recreational waters, and reservoirs, and often dominate phytoplankton communities in warm, nutrient-enriched hard waters. A stable water column rich in certain nutrients, especially nitrogen and phosphorus, is associated with favorable environmental conditions that support development of cyanobacterial population maxima or "blooms." Under specific conditions, cyanobacteria produce toxins that are responsible for acute poisoning and death of animals and humans. The main aim of this study was to correlate the presence of cyanobacteria blooms with potential toxicity to humans as a public health issue. In Portugal, seven reservoirs located in the southern region were selected and studied between 2000 and 2008. Reservoirs were characterized by physical and chemical aspects, and identification of phytoplankton communities. In the case of cyanobacterial blooms, toxins that affected the liver, nervous system, and skin were detected, namely, Microcystis aeruginosa, Aphanizomenon spp., and Oscillatoria. These findings suggest the presence of a potential risk for public health, and indicate the need to implement mitigation measures in all studied reservoirs. These measures may involve (1) water eutrophication control to avoid blooms, (2) appropriate treatment of water for human consumption, and (3) public warnings or information to those individuals that use these reservoirs for several recreational activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We evaluated the association between risk of obesity in the Portuguese population and two obesity-related single-nucleotide gene polymorphisms: fat-mass and obesity-associated (FTO) rs9939609 and peroxisome proliferator-activated receptor gamma (PPARG) rs1801282. Patients and methods: A total of 194 Portuguese premenopausal female Caucasians aged between 18 and 50 years (95 with body mass index [BMI] ≥30 g/m2, 99 controls with BMI 18.5–24.9 kg/m2) participated in this study. The association of the single-nucleotide polymorphisms with obesity was determined by odds ratio calculation with 95% confidence intervals. Results: Significant differences in allelic expression of FTO rs9939609 (P<0.05) were found between control and case groups, indicating a 2.5-higher risk for obesity in the presence of both risk alleles when comparing the control group with the entire obese group. A fourfold-higher risk was found for subjects with class III obesity compared to those with classes I and II. No significant differences in BMI were found between the control and case groups for PPARG rs1801282 (P>0.05). Conclusion: For the first time, a study involving an adult Portuguese population shows that individuals harboring both risk alleles in the FTO gene locus are at higher risk for obesity, which is in agreement to what has been reported for other European populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.