17 resultados para APTAMER-BASED SENSORS
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper presents the design of low-cost, conformal UHF antennas and RFID tags on two types of cork substrates: 1) natural cork and 2) agglomerate cork. Such RFID tags find an application in wine bottle and barrel identification, and in addition, they are suitable for numerous antenna-based sensing applications. This paper includes the high-frequency characterization of the selected cork substrates considering the anisotropic behavior of such materials. In addition, the variation of their permittivity values as a function of the humidity is also verified. As a proof-of-concept demonstration, three conformal RFID tags have been implemented on cork, and their performance has been evaluated using both a commercial Alien ALR8800 reader and an in-house measurement setup. The reading of all tags has been checked, and a satisfactory performance has been verified, with reading ranges spanning from 0.3 to 6 m. In addition, this paper discusses how inkjet printing can be applied to cork surfaces, and an RFID tag printed on cork is used as a humidity sensor. Its performance is tested under different humidity conditions, and a good range in excess of 3 m has been achieved, allied to a good sensitivity obtained with a shift of >5 dB in threshold power of the tag for different humid conditions.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
In this paper we show the design of passive UHF RFID tag antenna on cork substrate. Due to the cork sensitivity to humidity changes, we can use the developed sensor to sense changes in the relative humidity of the environment, without the need for batteries. The antenna is built using inkjet printing technology, which allows a good accuracy of the design manufacturing. The sensor proved usable for humidity changes detection with a variation of threshold power from 11 to 15 dB between 60 and near 100% humidity levels. Presenting, therefore, reading ranges between 3 to 5 meters. © 2015 EurAAP.
Resumo:
An optically addressed read-write sensor based on two stacked p-i-n heterojunctions is analyzed. The device is a two terminal image sensing structure. The charge packets are injected optically into the p-i-n writer and confined at the illuminated regions changing locally the electrical field profile across the p-i-n reader. An optical scanner is used for charge readout. The design allows a continuous readout without the need for pixel-level patterning. The role of light pattern and scanner wavelengths on the readout parameters is analyzed. The optical-to-electrical transfer characteristics show high quantum efficiency, broad spectral response, and reciprocity between light and image signal. A numerical simulation supports the imaging process. A black and white image is acquired with a resolution around 20 mum showing the potentiality of these devices for imaging applications.
Resumo:
A large area colour imager optically addressed is presented. The colour imager consists of a thin wide band gap p-i-n a-SiC:H filtering element deposited on the top of a thick large area a-SiC:H(-p)/a-Si:H(-i)/a-SiC:H(-n) image sensor, which reveals itself an intrinsic colour filter. In order to tune the external applied voltage for full colour discrimination the photocurrent generated by a modulated red light is measured under different optical and electrical bias. Results reveal that the integrated device behaves itself as an imager and a filter giving information not only on the position where the optical image is absorbed but also on it wavelength and intensity. The amplitude and sign of the image signals are electrically tuneable. In a wide range of incident fluxes and under reverse bias, the red and blue image signals are opposite in sign and the green signal is suppressed allowing blue and red colour recognition. The green information is obtained under forward bias, where the blue signal goes down to zero and the red and green remain constant. Combining the information obtained at this two applied voltages a RGB colour image picture can be acquired without the need of the usual colour filters or pixel architecture. A numerical simulation supports the colour filter analysis.
Resumo:
In recent works large area hydrogenated amorphous silicon p-i-n structures with low conductivity doped layers were proposed as single element image sensors. The working principle of this type of sensor is based on the modulation, by the local illumination conditions, of the photocurrent generated by a light beam scanning the active area of the device. In order to evaluate the sensor capabilities is necessary to perform a response time characterization. This work focuses on the transient response of such sensor and on the influence of the carbon contents of the doped layers. In order to evaluate the response time a set of devices with different percentage of carbon incorporation in the doped layers is analyzed by measuring the scanner-induced photocurrent under different bias conditions.
Resumo:
In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
Resumo:
Amorphous Si/SiC photodiodes working as photo-sensing or wavelength sensitive devices have been widely studied. In this paper single and stacked a-SiC:H p-i-n devices, in different geometries and configurations, are reviewed. Several readout techniques, depending on the desired applications (image sensor, color sensor, wavelength division multiplexer/demultiplexer device) are proposed. Physical models are presented and supported by electrical and numerical simulations of the output characteristics of the sensors.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present results about the functioning of a multilayered a-SiC:H heterostructure as a device for wavelength-division demultiplexing of optical signals. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photogenerated carriers. Band gap engineering was used to adjust the photogeneration and recombination rates profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption and carrier collection in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. This photocurrent is used as an input for a demux algorithm based on the voltage controlled sensitivity of the device. The device functioning is explained with results obtained by numerical simulation of the device, which permit an insight to the internal electric configuration of the double heterojunction.These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photocapacitance due to the accumulation of space charge localized at the internal junction. The existence of a direct relation between the experimentally observed capacitive effects of the double diode and the quality of the semiconductor materials used to form the internal junction is highlighted.
Resumo:
New sensory materials based on p-phenylene ethynylene trimers integrating calix[4]arene receptors (CALIX-PET) and tert-butylphenol (TBP-PET) moieties have been synthesized and their sensitivity and selectivity for the detection of nitroaromatic compounds (NACs) such as nitrobenzene (NB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT) and picric acid (PA) investigated in fluid phase and solid-state. It was found that both fluorophores displayed high sensitivities toward NACs detection in solution as evaluated by the Stern-Volmer formalism. For all the tested explosives, the ratio of fluorescence intensities (F-0/F) is a linear function of the quencher concentration only after appropriate correction of fluorescence quenching data for inner-filter effects. The quenching efficiencies for CALIX-PET and TBP-PET follow the order PA >> TNT > DNT > NB, which correlate well with the quenchers electron affinities as evaluated from their LUMOs energies thereby suggesting a photoinduced electron transfer as the dominant mechanism of fluorescence quenching. The selectivity of these sensors was checked against exemplar interferents possessing differentiated electronic properties (benzoic acid, 2,4-dichlorophenol and benzoquinone) and reduced quenching activity was detected. The quenching efficiencies and response times of the two fluorophores in the solid-state toward NB, 2,4-DNT and TNT vapors were evaluated through steady-state fluorescence quenching experiments with the materials dispersed in polymeric matrices or as neat films. The most significant fluorescence quenching responses were achieved for drop-casted films of TBP-PET upon exposure to nitroaromatics.