6 resultados para ANTIBIOTIC
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The production of MVOC by fungi has been taken into account especially from the viewpoint of indoor pollution with microorganisms but the relevance of fungal metabolites in working environments has not been sufficiently studied. The purpose of this study was to assess exposure to MVOCs in a waste-handling unit. It was used Multirae equipment (RAE Systems) to measured MVOCs concentration with a 10.6 eV lamps. The measurements were done near workers nose and during the normal activities. All measurements were done continuously and had the duration of 5 minutes at least. It was consider the higher value obtained in each measurement. In addition, for knowing fungi contamination, five air samples of 50 litres were collected through impaction method at 140 L/minute, at one meter tall, on to malt extract agar with the antibiotic chloramphenicol (MEA). MVOCs results range between 4.7 ppm and 8.9 ppm in the 6 locations consider. These results are eight times higher than normally obtained in indoor settings. Considering fungi results, two species were identified in air, being the genera Penicillium found in all the samples in uncountable colonies and Rhizopus only in one sample (40 UFC/m3). These fungi are known as MVOCs producers, namely terpenoids, ketones, alcohols and others. Until now, there has been no evidence that MVOCs are toxicologically relevant, but further epidemiological research is necessary to elucidate their role on human’s health, particularly in occupational settings where microbiological contamination is common. Additionally, further research should concentrate on quantitative analyses of specific MVOCs.
Resumo:
Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10–5 per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%. Such a high rate of adaptive evolution has implications for the evolution of antibiotic resistance and pathogenicity.
Resumo:
Agência Financiadora: Fundação para a Ciência e a Tecnologia - Pest-OE/QUI/UI0100/2013; PTDC/CTM-BPC/122447/2010; RECI/QEQ-QIN/0189/2012; SFRH/BPD/78854/2011
Resumo:
Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.
Resumo:
Helicobacter pylori infection represents a serious health problem, given its association with serious gastric diseases as gastric ulcers, cancer and MALT lymphoma. Currently no vaccine exists and antibiotic-based eradication therapy is already failing in more than 20% of cases. To increase the knowledge on the infection process diverse gastric cell lines, e.g. the adenocarcinona gastric (AGS) cell line, are routinely used has in vitro models of gastric epithelia. In the present work the molecular fingerprint of infected and non-infected AGS cell lines, by diverse H. pylori strains, was acquired using vibrational infrared spectroscopy. These molecular fingerprints enabled to discriminate infected from non-infected AGS cells, and infection due to different strains, by performing Principal Component Analysis. It was also possible to estimate, from the AGS cells molecular fingerprint, the effect of the infection on diverse biochemical and metabolic cellular status. In resume infra-red spectroscopy enabled the acquisition of infected AGS cells molecular fingerprint with minimal sample preparation, in a rapid, high-throughput, economic process yielding highly sensitive and informative data, most useful for promoting critical knowledge on the H. pylori infection process. © 2015 IEEE.