6 resultados para ANTI-TNF
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Objectives - The aim of this work was to study the interaction between genetic polymorphisms (single-nucleotide polymorphisms, SNPs) of pro- and anti-inflammatory cytokines and fat intake on the risk of developing Crohn's disease (CD) or modifying disease activity. Methods - Seven SNPs in interleukin 1 (IL1), tumor necrosis factor alpha (TNFalpha), lymphotoxin alpha (LTalpha), and IL6 genes were analyzed in 116 controls and 99 patients with CD. The type of fat intake was evaluated, and the interaction between SNPs and dietary fat in modulating disease activity was analyzed. Results - Individuals who were homozygous for the IL6-174G/C polymorphism had a six-fold higher risk for CD (odds ratio (OR)=6.1; 95% confidence interval (95% CI)=1.9-19.4), whereas the TT genotype on the TNFalpha-857C/T polymorphism was associated with more active disease (OR=10.4; 95% CI=1.1-94.1). A high intake of total, saturated, and monounsaturated fats, as well as a higher ratio of n-6/n-3 polyunsaturated fatty acid (PUFA), was associated with a more active phenotype (P<0.05). Furthermore, there was an interaction between dietary fat intake and SNPs, with a high intake of saturated and monounsaturated fats being associated with active disease, mainly in patients carrying the variant alleles of the 857 TNFalpha polymorphism (OR=6.0, 95% CI=1.4-26.2; OR=5.17; 95% CI=1.4-19.2, respectively) and the 174 IL6 polymorphism (OR=2.95; 95% CI=1.0-9.1; OR=3.21; 95% CI=1.0-10.4, respectively). Finally, low intake of n-3 PUFA and high n-6/n-3 PUFA ratio in patients with the TNFalpha 857 polymorphism were associated with higher disease activity (OR=3.6; 95% CI=1.0-13.0; OR=5.92; 95% CI=1.3-26.5, respectively). Conclusions - These results show that different types of fat may interact with cytokine genotype, modulating disease activity.
Resumo:
Acetylcholine (ACh) has been shown to exert an anti-inflammatory function by down-modulating the expression of pro-inflammatory cytokines. Its availability can be regulated at different levels, namely at its synthesis and degradation steps. Accordingly, the expression of acetylcholinesterase (AChE), the enzyme responsible for ACh hydrolysis, has been observed to be modulated in inflammation. To further address the mechanisms underlying this effect, we aimed here at characterizing AChE expression in distinct cellular types pivotal to the inflammatory response. This study was performed in the human acute leukaemia monocytyc cell line, THP-1, in human monocyte-derived primary macrophages and in human umbilical cord vein endothelial cells (HUVEC). In order to subject these cells to inflammatory conditions, THP-1 and macrophage were treated with lipopolysaccharide (LPS) from E.coli and HUVEC were stimulated with the tumour necrosis factor α (TNF-α). Our results showed that although AChE expression was generally up-regulated at the mRNA level under inflammatory conditions, distinct AChE protein expression profiles were aurprisingly observed among the distinct cellular types studied. Altogether, these results argue for the existence of cell specific mechanisms that regulate the expression of acetylcholinesterase in inflammation.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
Mg alloys can be used as bioresorsable metallic implants. However, the high corrosion rate of magnesium alloys has limited their biomedical applications. Although Mg ions are essential to the human body, an excess may cause undesirable health effects. Therefore, surface treatments are required to enhance the corrosion resistance of magnesium parts, decreasing its rate to biocompatible levels and allowing its safe application as bioresorbable metallic implants. The application of biocompatible silane coatings is envisaged as a suitable strategy for retarding the corrosion process of magnesium alloys. In the current work, a new glycidoxypropyltrimethoxysilane (GPTMS) based coating was tested on AZ31 magnesium substrates subjected to different surface conditioning procedures before coating deposition. The surface conditioning included a short etching with hydrofluoric acid (HF) or a dc polarisation in alkaline electrolyte. The silane coated samples were immersed in Hank's solution and the protective performance of the coating was studied through electrochemical impedance spectroscopy (EIS). The EIS data was treated by new equivalent circuit models and the results revealed that the surface conditioning process plays a key role in the effectiveness of the silane coating. The HF treated samples led to the highest impedance values and delayed the coating degradation, compared to the mechanically polished samples or to those submitted to dc polarisation.
Resumo:
Mestrado em Fiscalidade