22 resultados para ANIMAL GROWTH
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
In the last decades considerations about equipments' availability became an important issue, as well as its dependence on components characteristics such as reliability and maintainability. This is particularly of outstanding importance if one is dealing with high risk industrial equipments, where these factors play an important and fundamental role in risk management when safety or huge economic values are in discussion. As availability is a function of reliability, maintainability, and maintenance support activities, the main goal is to improve one or more of these factors. This paper intends to show how maintainability can influence availability and present a methodology to select the most important attributes for maintainability using a partial Multi Criteria Decision Making (pMCDM). Improvements in maintainability can be analyzed assuming it as a probability related with a restore probability density function [g(t)].
Resumo:
We present new populational growth models, generalized logistic models which are proportional to beta densities with shape parameters p and 2, where p > 1, with Malthusian parameter r. The complex dynamical behaviour of these models is investigated in the parameter space (r, p), in terms of topological entropy, using explicit methods, when the Malthusian parameter r increases. This parameter space is split into different regions, according to the chaotic behaviour of the models.
Resumo:
A descriptive study was developed in order to assess air contamination caused by fungi and particles in seven poultry units. Twenty seven air samples of 25 litters were collected through impaction method. Air sampling and particle concentration measurement were performed in the pavilions’ interior and also outside premises, since this was the place regarded as reference. Simultaneously, temperature and relative humidity were also registered. Regarding fungal load in the air from the seven poultry farms, the highest value obtained was 24040 CFU/m3 and the lowest was 320 CFU/m3. Twenty eight species/genera of fungi were identified, being Scopulariopsis brevicaulis (39.0%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. From the Aspergillus genus, Aspergillus flavus (74.5%) was the most frequently detected species. There was a significant correlation (r=0.487; p=0.014) between temperature and the level of fungal contamination (CFU/m3). Considering contamination caused by particles, in this study, particles with larger dimensions (PM5.0 and PM10) have higher concentrations. There was also a significant correlation between relative humidity and concentration of smaller particles namely, PM0.5 (r=0.438; p=0.025) and PM1.0 (r=0.537; p=0.005). Characterizing typical exposure levels to these contaminants in this specific occupational setting is required to allow a more detailed risk assessment analysis and to set exposure limits to protect workers’ health.
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
The subject matter of this book is about piano methodology, including technical, musical, artistic, ethical and philosophical issues and reflections. The purpose of this work is to share a personal professional experience insight in the field of piano performance. This text assumes a certain continuity to the major contributions of artists like Ludwig Deppe, Tobias Matthay, Grigory Kogan, Heinrich Neuhaus and George Kochevitsky. At the same time, it tries to integrate and complement this selected literature, bringing new ideas and hints to specific professional issues.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
Animal confinement tends to increase the overall microbial load in the production environment caused by high amounts of feed and organic residuals (manure and wastewater) present in those environments. The number of animais and the handling and management required to work in these settings also contribute to enhance that microbial ioad. Animal housing typically exposes workers to substantial concentrations of bioaerosols, such as fungi and their metabolites. Therefore, agricultural workers, and especially pig and poultry farmers, are at increased risk of occupational respiratory diseases. Exposure to bioaerosols in poultries and swines may vary depending upon the stage of the animals' growth, density, manure management procedures, litter type and used floor coverage, among others. Gathering temporal information about the quantity and the composition of fungal load is necessary to better understand the relationship between these factors and adverse health symptoms of workers. This study aimed to characterize and compare fungal contamination between these two different settings.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 degrees C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films' phase composition, increasing with the increase of the Urbach energy for increasing rutile content. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Results of research work developed in anatomy and pathology laboratories have indicated that “macroscopic examination” is the task involving the highest exposure to formaldehyde. This is probably because precision and very good visibility are needed and, therefore, pathologists must lean over the specimen with consequent increase of proximity. With this research we aimed to know formaldehyde exposure in case of animal’s macroscopic examination. Three macroscopic examinations were considered and exposure assessment performed with photo ionization detection (PID) direct-reading equipment (with an 11.7 eV lamp) designated by First-Check, from Ion Science. Higher values of formaldehyde concentration (ceiling values) were register in each exam.
Resumo:
IBD is a gastro-intestinal disorder marked with chronic inflammation of intestinal epithelium, damaging mucosal tissue and manifests into several intestinal and extra-intestinal symptoms. Currently used medical therapy is able to induce and maintain the patient in remission, however no modifies or reverses the underlying pathogenic mechanism. The research of other medical approaches is crucial to the treatment of IBD and, for this, it´s important to use animal models to mimic the characteristics of disease in real life. The aim of the study is to develop an animal model of TNBS-induced colitis to test new pharmacological approaches. TNBS was instilled intracolonic single dose as described by Morris et al. It was administered 2,5% TNBS in 50% ethanol through a catheter carefully inserted into the colon. Mice were kept in a Tredelenburg position to avoid reflux. On day 4 and 7, the animals were sacrificed by cervical dislocation. The induction was confirmed based on clinical symptoms/signs, ALP determination and histopathological analysis. At day 4, TNBS group presented a decreased body weight and an alteration of intestinal motility characterized by diarrhea, severe edema of the anus and moderate morbidity, while in the two control groups weren’t identified any alteration on the clinical symptoms/signs with an increase of the body weight. TNBS group presented the highest concentrations of ALP comparing with control groups. The histopathology analysis revealed severe necrosis of the mucosa with widespread necrosis of the intestinal glands. Severe hemorrhagic and purulent exsudates were observed in the submucosa, muscular and serosa. TNBS group presented clinical symptoms/signs and histopathological features compatible with a correct induction of UC. The peak of manifestations became maximal at day 4 after induction. This study allows concluding that it’s possible to develop a TNBS induced colitis 4 days after instillation.
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.