12 resultados para AMYGDALA REACTIVITY
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Reaction of the tris(3-phenylpyrazolyl)methane sulfonate species (Tpms(Ph))Li with the copper(I) complex [Cu(MeCN)(4)][PF6] affords [Cu(Tpms(Ph))(MeCN)] 1. The latter, upon reaction with equimolar amounts of cyclohexyl-(CyNC) or 2,6-dimethylphenyl (XylNC) isocyanides, or excess CO, furnishes the corresponding Cu(I)complexes [Cu(Tpms(Ph))(CNR)] (R = Cy 2, Xyl 3) or [Cu(Tpms(Ph))(CO)] 4. The ligated isocyanide in 2 or 3 (or the acetonitrile ligand in 1)is displaced by 3-iminoisoindolin-1-one to afford 5, the first copper(I) complex containing an 3-iminoisoindolin-1-one ligand. The ligated acetonitrile in 1 undergoes nucleophilic attack by methylamine to give the amidine complex [Cu(Tpms(Ph)){MeC(NH)NHMe}] 6, whereas only the starting materials were recovered from the attempted corresponding reactions of 2 and 3 with methylamine. Complexes 1 or 6 form the trinuclear hydroxo-copper(II)species [(mu-Cu){Cu(mu-OH) (2)(Tpms(Ph))}(2)] 7 upon air oxidation in moist methanol. In all the complexes the scorpionate ligand facially caps the metal in the N,N,O-coordination mode.
Resumo:
Eucalyptus globulus sapwood and heartwood showed no differences in lignin content (23.0% vs. 23.7%) and composition: syringyl-lignin (17.9% vs. 18.0%) and guaiacyl-lignin (4.8% vs. 5.2%). Delignification kinetics of S- and G-units in heartwood and sapwood was investigated by Py-GC–MS/FID at 130, 150 and 170 °C and modeled as double first-order reactions. Reactivity differences between S and G-units were small during the main pulping phase and the higher reactivity of S over G units was better expressed in the later pulping stage. The residual lignin composition in pulps was different from wood or from samples in the initial delignification stages, with more G and H-units. S/G ratio ranged from 3 to 4.5 when pulp residual lignin was higher than 10%, decreasing rapidly to less than 1. The S/H was initially around 20 (until 15% residual lignin), decreasing to 4 when residual lignin was about 3%.
Resumo:
Formaldehyde (FA) is ubiquitous in the environment and is a chemical agent that possesses high reactivity. Occupational exposure to FA has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. The exposure to this substance is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronucleus (biomarkers of chromosomes breakage or loss), nucleoplasmic bridges (biomarker of chromosome rearrangement, poor repair and / or telomeres fusion) and nuclear buds (biomarker of elimination of amplified DNA). The gene X-ray repair cross-complementing group 3 (XRCC3) is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks and at least one polymorphism has been reported in codon 241, a substitution of a methionine for a threonine.
Resumo:
No quadro dos estudos sobre o relacionamento mãe-filho, procurámos averiguar a relação entre a reactividade infantil observada em condições de stress e a qualidade do comportamento interactivo infantil e materno em jogo livre. Para o efeito, seleccionámos uma amostrade 40 díades mãe-filho cujos bebés tinham cerca de 3 meses e não apresentavam nenhuma condição declarada de risco. A qualidade da interacção mãe-filho foi avaliada em jogo livre através da escala CARE-Index. Para testar a reactividade infantil submetemos os bebés à situação experimental Still-Face. Os resultados mostram que a reactividade infantil expressa naquela situação laboratorial não é independente do comportamento dos bebés em jogo livre. Com efeito, os bebés com maior dificuldade em conformar-se com a ausência de resposta materna apresentam um comportamento menos cooperativo e difícil em jogo livre. Em sentido inverso, os bebés que em jogo livre são menos participativos apresentam menores índices de reactividade negativa quando a mãe mantém a cara inexpressiva. Em termos diádicos, verificamos que existe uma forte correlação entre o comportamento cooperativo do bebé e a sensibilidade materna em jogo livre. Os resultados são discutidos no quadro do desenvolvimento dos processos de interacção mãe e filho.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde.
Resumo:
Trends between the Hammett's sigma(p) and related normal sigma(n)(p), inductive sigma(I), resonance sigma(R), negative sigma(-)(p) and positive sigma(+)(p) polar conjugation and Taft's sigma(o)(p) substituent constants and the N-H center dot center dot center dot O distance, delta(N-H) NMR chemical shift, oxidation potential (E-p/2(ox), measured in this study by cyclic voltammetry (CV)) and thermodynamic parameters (pK, Delta G(0), Delta H-0 and Delta S-0) of the dissociation process of unsubstituted 3-(phenylhydrazo)pentane-2,4-dione (HL1) and its para-substituted chloro (HL2), carboxy (HL3), fluoro (HL4) and nitro (HL5) derivatives were recognized. The best fits were found for sigma(p) and/or sigma(-)(p) in the cases of d(N center dot center dot center dot O), delta(N-H) and E-p/2(ox), showing the importance of resonance and conjugation effects in such properties, whereas for the above thermodynamic properties the inductive effects (sigma(I)) are dominant. HL2 exists in the hydrazo form in DMSO solution and in the solid state and contains an intramolecular H-bond with the N center dot center dot center dot O distance of 2.588(3)angstrom. It was also established that the dissociation process of HL1-5 is non-spontaneous, endothermic and entropically unfavourable, and that the increase in the inductive effect (sigma(I)) of para-substitutents (-H < -Cl < -COOH < -F < -NO2) leads to the corresponding growth of the N center dot center dot center dot O distance and decrease of the pK and of the changes of Gibbs free energy, of enthalpy and of entropy for the HL1-5 acid dissociation process. The electrochemical behaviour of HL1-5 was interpreted using theoretical calculations at the DFT/HF hybrid level, namely in terms of HOMO and LUMO compositions, and of reactivities induced by anodic and cathodic electron-transfers. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica - Ramo de Bioprocessos
Resumo:
The most active phase of the fluid catalytic cracking (FCC) catalyst, used in oil refinery, is zeolite-Y which is an aluminosilicate with a high internal and external surface area responsible for its high reactivity. Waste FCC catalyst is potentially able to be reused in cement-based materials - as an additive - undergoing a pozzolanic reaction with calcium hydroxide (Ca(OH)2) formed during cement hydration [1-3]. This reaction produces additional strength-providing reaction products i.e., calcium silicate hydrate (C-S-H) and hydrous calcium aluminates (C-A-H) which exact chemical formula and structure are still unknown. Partial replacement of cement by waste FCC catalyst has two key advantages: (1) lowering of cement production with the associated pollution reduction as this industry represents one of the largest sources of man-made CO2 emissions, and (2) improving the mechanical properties and durability of cement-based materials. Despite these advantages, there is a lack of fundamental knowledge on pozzolanic reaction mechanisms as well as spatial distribution of porosity and solid phases interactions at the microstructural level and consequently their relationship with macroscopical engineering properties of catalyst/cement blends. Within this scope, backscattered electron (BSE) images acquired in a scanning electron microscope (SEM) equipped with Energy-Dispersive Spectroscopy (EDS) and by X-ray diffraction were used to investigate chemical composition of hydration products and to analyse spatial information of the microstructure of waste FCC catalyst blended cement mortars. For this purpose mortars with different levels of cement substitution by waste catalyst as well as with different hydration ages, were prepared. The waste FCC catalyst used is produced by the Portuguese refinery company Petrogal S.A.
Resumo:
A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.
Resumo:
Present paper present the main results obtained in the scope of an ongoing project which aims to contribute to the valorization of a waste generated by the Portuguese oil company in construction materials. This waste is an aluminosilicate with high pozzolanic reactivity. Several different technological applications had already been tested with success both in terms of properties and compliance with the corresponding standards specifications. Namely, this project results already demonstrated that this waste can be used in traditional concrete, self-compacted concrete, mortars (renders, masonry mortar, concrete repair mortars), cement main constituent as well as alkali activated binders.
Resumo:
β-d-glucans from basidiomycete strains are powerful immunomodulatory agents in several clinical conditions. Therefore, their assay, purification and characterization are of great interest to understand their structure-function relationship. Hybridoma cell fusion was used to raise monoclonal antibodies (Mabs) against extracellular β-d-glucans (EBGs) from Pleurotus ostreatus. Two of the hybridoma clones (1E6-1E8-B5 and 3E8-3B4) secreting Mabs against EBGs were selected. This hybridoma cell line secreted Mabs of the IgG class which were then purified by hydroxyapatite chromatography to apparent homogeneity on native and SDS-PAGE. Mabs secreted by 1E6-1E8-B5 clone were found to recognize a common epitope on several β-d-glucans from different basidiomycete strains. This Mab exhibited high affinity constant (KA) for β-d-glucans from several mushroom strains in the range of 3.20 × 109 ± 3.32 × 103-1.51 × 1013 ± 3.58 × 107 L/mol. Moreover, they reacted to some heat-treated β-d-glucans in a different mode when compared with the native forms; these data suggest that this Mab binds to a conformational epitope on the β-d-glucan molecule. The epitope-binding studies of Mabs obtained from 1E6-1E8-B5 and 3E8-3B4 revealed that the Mabs bind to the same epitope on some β-d-glucans and to different epitopes in other antigen molecules. Therefore, these Mabs can be used to assay for β-d-glucan from basidiomycete mushrooms. © 2015 Elsevier Ltd. All rights reserved.