5 resultados para AK Growth Model
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
The growth experimented in recent years in both the variety and volume of structured products implies that banks and other financial institutions have become increasingly exposed to model risk. In this article we focus on the model risk associated with the local volatility (LV) model and with the Variance Gamma (VG) model. The results show that the LV model performs better than the VG model in terms of its ability to match the market prices of European options. Nevertheless, both models are subject to significant pricing errors when compared with the stochastic volatility framework.
Resumo:
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We propose a 3-D gravity model for the volcanic structure of the island of Maio (Cape Verde archipelago) with the objective of solving some open questions concerning the geometry and depth of the intrusive Central Igneous Complex. A gravity survey was made covering almost the entire surface of the island. The gravity data was inverted through a non-linear 3-D approach which provided a model constructed in a random growth process. The residual Bouguer gravity field shows a single positive anomaly presenting an elliptic shape with a NWSE trending long axis. This Bouguer gravity anomaly is slightly off-centred with the island but its outline is concordant with the surface exposure of the Central Igneous Complex. The gravimetric modelling shows a high-density volume whose centre of mass is about 4500 m deep. With increasing depth, and despite the restricted gravimetric resolution, the horizontal sections of the model suggest the presence of two distinct bodies, whose relative position accounts for the elongated shape of the high positive Bouguer gravity anomaly. These bodies are interpreted as magma chambers whose coeval volcanic counterparts are no longer preserved. The orientation defined by the two bodies is similar to that of other structures known in the southern group of the Cape Verde islands, thus suggesting a possible structural control constraining the location of the plutonic intrusions.