5 resultados para 1-HEXYL-4-ETHYLOCTYL ISOPROPYLPHOSPHONIC ACID

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study the risk of obesity posed by two genetic factors: haptoglobin phenotype and acid phosphatase phenotype, one enzymatic activity: acid phosphatase activity (ACP1), age and gender. Haptoglobin (Hp) is a protein of the immune system, and three phenotypes of Hp are found in humans: Hp1-1, Hp2-1, and Hp2-2. This protein is associated with a susceptibility to common pathological conditions, such as obesity. ACP1 is an intracellular enzyme The phenotypes of ACP1 (AA, AB, AC, BB, BC, CC) are also considered. We took a sample of 127 subjects with complete data from 714 registers. Since we intend to identify risk factors for obesity, an ordinal regression model is adjusted, using the Body Mass Index, BMI, to define weight categories. Haptoglobin phenotype, enzymatic activity of ACP1, acid phosphatase phenotype, age and gender are considered as regressor variables. We found three factors associated with an increased risk of obesity: phenotype Hp2-1 of haptoglobin (estimated odds ratio OR 11.54), phenotype AA of acid phosphatase (OR 33.788) and age (OR 1.39). The interaction between phenotype Hp2-1 and phenotype AC is associated with a decreased risk of obesity (OR 0.032); The interaction between phenotype AA and ACP1 activity is associated with a decreased risk of obesity (OR 0.954).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new potentially N-4-multidentate pyridyl-functionalized scorpionates 4-((tris-2,2,2-(pyrazol-1-ypethoxy)methyl)pyridine (TpmPy, (1)) and 4-((tris-2,2,2-(3-phenylpyrazol-1-yl)ethoxy)methyl)pyridine (TpmPy(Ph), (2)) have been synthesized and their coordination behavior toward Fe-II, Ni-II, Zn-II, Cu-II, Pd-II, and V-III centers has been studied. Reaction of (1) with Fe(BF4)(2)center dot 6H(2)O yields [Fe(TpmPy)(2)](BF4)(2) (3), that, in the solid state, shows the sandwich structure with trihapto ligand coordination via the pyrazolyl arms, and is completely low spin (LS) until 400 K. Reactions of 2 equiv of (1) or (2) with Zn-II or Ni-II chlorides give the corresponding metal complexes with general formula [MCl2(TpmPy*)(2)] (M = Zn, Ni; TpmPy* = TpmPy, TpmPy(Ph)) (4-7) where the ligand is able to coordinate through either the pyrazolyl rings (in case of [Ni(TpmPy)(2)Cl-2 (5)) or the pyridyl-side (for [ZnCl2(TpmPy)(2)] (4), [ZnCl2(TpmPy(Ph))(2)] (6) and [NiCl2(TpmPy(Ph))(2)] (7)). The reaction of (1) with VCl3 gives [VOCl2(TpmPy)] (8) that shows the N-3-pyrazolyl coordination-mode. Moreover, (1) and react with cis-[PdCl2(CH3CN)(2)] to give the disubstituted complexes [PdCl2(TprnPy)(2)] (9) and [PdCl2(TpmPy(Ph))(2)] (10), respectively, bearing the scorpionate coordinated via the pyridyl group. Compounds (9) and (10) react with Fe(BF4)(2) to give the heterobimetallic Pd/Fe systems [PdCl2(mu-TpmPy)(2)-Fe](BF4)(2) (11) and [PdCl2(mu-TpmPy(Ph))(2)Fe-2(H2O)(6)]BF4)(4) (13), respectively. Compound (11) can also be formed from reaction of (3) with cis-[PdCl2(CH3CN)(2)], while reaction of (3) with Cu(NO3)(2).2.5H(2)O generates [Fe(mu-TpmPy)(2)-Cu(NO3)(2)](BF4)(2) (12), confirming the multidentate ability of the new chelating ligands. The X-ray diffraction analyses of compounds (1), (3), (4), (5), and (9) are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two multinuclear complexes [Fe-6(mu(3)-O)(2)(mu(4)-O-2)L-10(OAc)(2)(H2O)(2)]center dot 2.625Et(2)O center dot 2.375H(2)O (1) and [(Fe11Cl)-Cl-III-(mu(4)-O)(3)(mu(3)-O)(5)L-16(dmf)(2.5)(H2O)(0.5)]center dot Et2O center dot 1.25dmf center dot 3.8H(2)O (2), where HL = 3,4,5-trimethoxybenzoic acid and dmf = dimethylformamide, have been prepared from trinuclear iron(III) carboxylates via their structural rearrangement in dimethylformamide or diethyl ether-dimethylformamide 9:1, respectively, and slow vapor diffusion of diethyl ether into the reaction mixture. Both compounds have been characterized by X-ray diffraction, optical, Mossbauer spectroscopy, and magnetic measurements. Complex 1 possesses a hexanuclear ferric peroxido-dioxido {Fe-6(O-2)(O)(2)}(12+) core unit, which adopts a recliner conformation, while complex 2 contains an unprecedented {Fe11O8Cl}(16+) core, in which 9 ferric ions are six-coordinate and the remaining two are five-coordinate. Another structural feature of note of the undecanuclear core is the presence of a deformed cubane entity {Fe-4(mu(3)-O)(mu(4)-O)(3)}(4+). Both complexes act as catalyst precursors for the oxidation of cyclohexane to cyclohexanol and cyclohexanone with aqueous H2O2, in the presence of pyrazinecarboxylic acid. Remarkable TONs and TOFs (the latter mainly for 1) with concomitant quite good yields have been achieved under mild conditions. Moreover, 1 exhibits remarkably high activity in an exceptionally short reaction time (45 min), being unprecedented for any metal catalyzed alkane oxidation by H2O2. The catalytic reactions proceed via Fenton type chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new tetranuclear complexes [Cu-4(mu-O)(L-1)-Cl-4] and [Cu-4(mu(4)-O)(L-2)(2)Cl-4] (2), where H2L1 is a macrocyclic ligand resulting from [2+2] condensation of 2,6-diformy1-4-methylphanol (DFF) and 1,3-bis(aminopropy1)tetramethyldisiloxane, and HL2 is a 1:2 condensation product: of DFF with trimethylsilyl p-aminobenzoate, have been prepared. The structures of the products were established by Xray diffraction. The complexes have been characterised by FTIR, UV/Vis spectroscopy, ES1 mass-spectrometry and magnetic susceptibility measurements. The latter revealed that the letrftriuclear complexes can be descr bed as two ferromagnetically coupled dinuclear units, in which the two copper(II) ions interact antiferromacinetically. The ccimpi.iunds act as homogeneous catalyst precursors for a number of single-pot reactions, including (I) hydrocarbaxylation, with CO, H2O and K2S2O8, of a variety of linear and cyclic (n = 5-8) alkanes into the corresponding Cn+1 carboxylic acids, (ii) peroxidative oxidation of cyclohexane, and (iii) solvent-free microwave-assisted oxidation of 1-phenyletha.nol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Part I of the present work we describe the viscosity measurements performed on tris(2-ethylhexyl) trimellitate or 1,2,4-benzenetricarboxylic acid, tris(2-ethylhexyl) ester (TOTM) up to 65 MPa and at six temperatures from (303 to 373)K, using a new vibrating-wire instrument. The main aim is to contribute to the proposal of that liquid as a potential reference fluid for high viscosity, high pressure and high temperature. The present Part II is dedicated to report the density measurements of TOTM necessary, not only to compute the viscosity data presented in Part I, but also as complementary data for the mentioned proposal. The present density measurements were obtained using a vibrating U-tube densimeter, model DMA HP, using model DMA5000 as a reading unit, both instruments from Anton Paar GmbH. The measurements were performed along five isotherms from (293 to 373)K and at eleven different pressures up to 68 MPa. As far as the authors are aware, the viscosity and density results are the first, above atmospheric pressure, to be published for TOTM. Due to TOTM's high viscosity, its density data were corrected for the viscosity effect on the U-tube density measurements. This effect was estimated using two Newtonian viscosity standard liquids, 20 AW and 200 GW. The density data were correlated with temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as +/- 0.2% at a 95% confidence level. Those results were correlated with temperature and pressure by a modified Tait equation, with deviations within +/- 0.25%. Furthermore, the isothermal compressibility, K-T, and the isobaric thermal expansivity, alpha(p), were obtained by derivation of the modified Tait equation used for correlating the density data. The corresponding uncertainties, at a 95% confidence level, are estimated to be less than +/- 1.5% and +/- 1.2%, respectively. No isobaric thermal expansivity and isothermal compressibility for TOTM were found in the literature. (C) 2014 Elsevier B.V. All rights reserved.