34 resultados para 013
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Qualidade e Tecnologias da Saúde.
Resumo:
Biodiesel production from semi-refined oils (SRO) and waste frying oils (WFO) was studied using commercial CaO as heterogeneous catalyst. The methanolysis tests were carried out in mild reaction conditions (62 A degrees C, atmospheric pressure). With such conditions, SRO (soybean and rapeseed) allowed to produce a biodiesel containing 97-98 % of methyl esters (FAME), whereas WFO only provided 86-87 % of FAME. The lower FAME yield for WFO oil is ascribable to the partial neutralization of the catalyst by free fatty acids. Also, soaps formation from the WFO oil reduced the weight yield of the oil phase (containing FAME) obtained and increased the MONG content of the glycerin phase. The catalysts stability tests showed high stability even when WFO oil was processed. Catalytic tests performed with blends of WFO/semi-refined oils showed blending as a good strategy to process low value raw oils with minor decay of the catalyst performance. Both WFO and semi-refined oils showed S-shape kinetics curves thus discarding significant differences of the reaction mechanisms.
Resumo:
We present the first version of a new tool to scan the parameter space of generic scalar potentials, SCANNERS (Coimbra et al., SCANNERS project., 2013). The main goal of SCANNERS is to help distinguish between different patterns of symmetry breaking for each scalar potential. In this work we use it to investigate the possibility of excluding regions of the phase diagram of several versions of a complex singlet extension of the Standard Model, with future LHC results. We find that if another scalar is found, one can exclude a phase with a dark matter candidate in definite regions of the parameter space, while predicting whether a third scalar to be found must be lighter or heavier. The first version of the code is publicly available and contains various generic core routines for tree level vacuum stability analysis, as well as implementations of collider bounds, dark matter constraints, electroweak precision constraints and tree level unitarity.
Resumo:
The ruthenium(II)-cymene complexes [Ru(eta(6)-cymene)(bha)Cl] with substituted halogenobenzohydroxamato (bha) ligands (substituents = 4-F, 4-Cl, 4-Br, 2,4-F-2, 3,4-F-2, 2,5-F-2, 2,6-F-2) have been synthesized and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, cyclic voltammetry and controlled-potential electrolysis, and density functional theory (DFT) studies. The compositions of their frontier molecular orbitals (MOs) were established by DFT calculations, and the oxidation and reduction potentials are shown to follow the orders of the estimated vertical ionization potential and electron affinity, respectively. The electrochemical E-L Lever parameter is estimated for the first time for the various bha ligands, which can thus be ordered according to their electron-donor character. All complexes exhibit very strong protein tyrosine kinase (PTK) inhibitory activity, even much higher than that of genistein, the clinically used PTK inhibitory drug. The complex containing the 2,4-difluorobenzohydroxamato ligand is the most active one, and the dependences of the PTK activity of the complexes and of their redox potentials on the ring substituents are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates fromAspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecularmethodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0% in the air samples, 24.0 versus 16.0% in the surfaces, 0 versus 32.6% in new litter, and 9.9 versus 15.9%in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.
Resumo:
The Bologna Process aimed to build a European Higher Education Area with the objective of promoting students mobility. The adoption of Bologna Declaration directives requires a decentralized approach that accelerates student's mobility, based on frequently updated legislation. This paper proposes a student personal system to manage student's academic information. This system is supported by a flexible model that integrates, for instance, knowledge about the student attended courses or about a course that the student wishes to apply. Essentially, this model holds a (i) Student's Academic Record with skills acquired in academic course units, professional experience or training and an (ii) Individual Studies Plan, which places the student in a particular (iii) Course Plan setting the curricular structure that the student wishes to apply.
Resumo:
Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Resumo:
Backgroung - Bariatric surgery is indicated as the most effective treatment for morbid obesity; the Roux-en-Y gastric bypass (RYGB) is considered the procedure of choice. However, nutritional deficiency may occur in the postoperative period as a result of reduced gastric capacity and change in nutrients absorption in the gastrointestinal tract. The prescription of vitamin and mineral supplementation is a common practice after RYGB; however, it may not be sufficient to prevent micronutrient deficiencies. The aim of this study was to quantify the micronutrient intake in patients undergoing RYGB and verify if the intake of supplementation would be enough to prevent nutritional deficiencies. Methods - The study was conducted on 60 patients submitted to RYGB. Anthropometric, analytical, and nutritional intake data were assessed preoperatively and 1 and 2 years postoperatively. The dietary intake was assessed using 24-h food recall; the values of micronutrients evaluated (vitamin B12, folic acid, iron, and calcium) were compared to the dietary reference intakes (DRI). Results - There were significant differences (p < 0.05) between excess weight loss at the first and second year (69.9 ± 15.3 vs 9.6 ± 62.9 %). In the first and second year after surgery, 93.3 and 94.1 % of the patients, respectively, took the supplements as prescribed. Micronutrient deficiencies were detected in the three evaluation periods. At the first year, there was a significant reduction (p < 0.05) of B12, folic acid, and iron intake. Conclusions - Despite taking vitamin and mineral supplementation, micronutrient deficiencies are common after RYGB. In the second year after surgery, micronutrient intake remains below the DRI.
Resumo:
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Resumo:
Objectives - Review available guidance for quality assurance (QA) in mammography and discuss its contribution to harmonise practices worldwide. Methods - Literature search was performed on different sources to identify guidance documents for QA in mammography available worldwide in international bodies, healthcare providers, professional/scientific associations. The guidance documents identified were reviewed and a selection was compared for type of guidance (clinical/technical), technology and proposed QA methodologies focusing on dose and image quality (IQ) performance assessment. Results - Fourteen protocols (targeted at conventional and digital mammography) were reviewed. All included recommendations for testing acquisition, processing and display systems associated with mammographic equipment. All guidance reviewed highlighted the importance of dose assessment and testing the Automatic Exposure Control (AEC) system. Recommended tests for assessment of IQ showed variations in the proposed methodologies. Recommended testing focused on assessment of low-contrast detection, spatial resolution and noise. QC of image display is recommended following the American Association of Physicists in Medicine guidelines. Conclusions - The existing QA guidance for mammography is derived from key documents (American College of Radiology and European Union guidelines) and proposes similar tests despite the variations in detail and methodologies. Studies reported on QA data should provide detail on experimental technique to allow robust data comparison. Countries aiming to implement a mammography/QA program may select/prioritise the tests depending on available technology and resources.
Resumo:
Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
Considering that recent european high-speed railway system has a traction power system of kV 50 Hz, which causes electromagnetic emission for the outside world, it is important to dimension the railway system emissions, using a frequency/distance dependent propagation model. This paper presents an enhanced theoretical model for VLF to UHF propagation, railway system oriented. It introduces the near field approach (crucial in low frequency propagation) and also considers the source characteristics and type of measuring antenna. Simulations are presented, and comparisons are set with earlier far field models. Using the developed model, a real case study was performed in partnership with Refer Telecom (portuguese telecom operator for railways). The new propagation model was used in order to predict the future high-speed railway electromagnetic emissions in the Lisbon north track. The results show the model's prediction capabilities and also its applicability to realistic scenarios.