4 resultados para - Rapid Manufacturing
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Computational evaluation of hydraulic system behaviour with entrapped air under rapid pressurization
Resumo:
The pressurization of hydraulic systems containing entrapped air is considered a critical condition for the infrastructure's security due to transient pressure variations often occurred. The objective of the present study is the computational evaluation of trends observed in variation of maximum surge pressure resulting from rapid pressurizations. The comparison of the results with those obtained in previous studies is also undertaken. A brief state of art in this domain is presented. This research work is applied to an experimental system having entrapped air in the top of a vertical pipe section. The evaluation is developed through the elastic model based on the method of characteristics, considering a moving liquid boundary, with the results being compared with those achieved with the rigid liquid column model.
Computational evaluation of hydraulic system behaviour with entrapped air under rapid pressurization
Resumo:
The pressurization of hydraulic systems containing entrapped air is considered a critical condition for the infrastructure's security due to transient pressure variations often occurred. The objective of the present study is the computational evaluation of trends observed in variation of maximum surge pressure resulting from rapid pressurizations. The comparison of the results with those obtained in previous studies is also undertaken. A brief state of art in this domain is presented. This research work is applied to an experimental system having entrapped air in the top of a vertical pipe section. The evaluation is developed through the elastic model based on the method of characteristics, considering a moving liquid boundary, with the results being compared with those achieved with the rigid liquid column model.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.
Resumo:
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.