62 resultados para Topological Construct


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new dynamical invariant, the performance of a clustering, that characterizes the quality of the formation of clusters. We prove that the growth of the dynamical invariant, the network topological entropy, has the effect of worsening the quality of a clustering, in a process of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a clustering with the number of edges in a process of clustering by successive removal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.