71 resultados para Classification image technique
Resumo:
Purpose: To compare image quality and effective dose when the 10 kVp rule is applied with manual and AEC mode in PA chest X-ray. Methods and Materials: A total of 68 images (with and without lesions) were acquired of an anthropomorphic chest phantom in a Wolverson Arcoma X-ray unit. The images were evaluated against a reference image using image quality criteria and the 2 alternative forced choice (2 AFC) method by five radiographers. The effective dose was calculated using PCXMC software using the exposure parameters and DAP. The exposure index (lgM) was recorded. Results: Exposure time decreases considerably when applying the 10 kVp rule in manual mode (50%-28%) compared to AEC mode (36%-23%). Statistical differences for effective dose between several AEC modes were found (p=0.002). The effective dose is lower when using only the right AEC ionization chamber. Considering image quality, there are no statistical differences (p=0.348) between the different AEC modes for images with no lesions. Using a higher kVp value the lgM values will also increase. The lgM values showed significant statistical differences (p=0.000). The image quality scores did not present statistically significant differences (p=0.043) for the images with lesions when comparing manual with AEC modes. Conclusion: In general, the dose is lower in the manual mode. By using the right AEC ionising chamber the effective dose will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the detectability of the lesions.
Resumo:
In visual sensor networks, local feature descriptors can be computed at the sensing nodes, which work collaboratively on the data obtained to make an efficient visual analysis. In fact, with a minimal amount of computational effort, the detection and extraction of local features, such as binary descriptors, can provide a reliable and compact image representation. In this paper, it is proposed to extract and code binary descriptors to meet the energy and bandwidth constraints at each sensing node. The major contribution is a binary descriptor coding technique that exploits the correlation using two different coding modes: Intra, which exploits the correlation between the elements that compose a descriptor; and Inter, which exploits the correlation between descriptors of the same image. The experimental results show bitrate savings up to 35% without any impact in the performance efficiency of the image retrieval task. © 2014 EURASIP.
Resumo:
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.
Resumo:
Objectives: Children have a greater risk from radiation, per unit dose, due to increased radiosensitivity and longer life expectancies. It is of paramount importance to reduce the radiation dose received by children. This research concerns chest CT examinations on paediatric patients. The purpose of this study was to compare the image quality and the dose received from imaging with images reconstructed with filtered back projection (FBP) and five strengths of Sinogram-Affirmed Iterative Reconstruction (SAFIRE). Methods: Using a multi-slice CT scanner, six series of images were taken of a paediatric phantom. Two kVp values (80 and 110), 3 mAs values (25, 50 and 100) and 2 slice thicknesses (1 mm and 3 mm) were used. All images were reconstructed with FBP and five strengths of SAFIRE. Ten observers evaluated visual image quality. Dose was measured using CT-Expo. Results: FBP required a higher dose than all SAFIRE strengths to obtain the same image quality for sharpness and noise. For sharpness and contrast image quality ratings of 4, FBP required doses of 6.4 and 6.8 mSv respectively. SAFIRE 5 required doses of 3.4 and 4.3 mSv respectively. Clinical acceptance rate was improved by the higher voltage (110 kV) for all images in comparison to 80 kV, which required a higher dose for acceptable image quality. 3 mm images were typically better quality than 1 mm images. Conclusion: SAFIRE 5 was optimal for dose reduction and image quality.
Resumo:
Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP). Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithms has the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently. Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction. Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014). Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality. Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiation sensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.
Resumo:
Purpose: To investigate whether standard X-ray acquisition factors for orbital radiographs are suitable for the detection of ferromagnetic intra-ocular foreign bodies in patients undergoing MRI. Method: 35 observers, at varied levels of education in radiography, attending a European Dose Optimisation EURASMUS Summer School were asked to score 24 images of varying acquisition factors against a clinical standard (reference image) using two alternative forced choice. The observers were provided with 12 questions and a 5 point Likert scale. Statistical tests were used to validate the scale, and scale reliability was also measured. The images which scored equal to, or better than, the reference image (36) were ranked alongside their corresponding effective dose (E), the image with the lowest dose equal to or better than the reference is considered the new optimum acquisition factors. Results: Four images emerged as equal to, or better than, the reference in terms of image quality. The images were then ranked in order of E. Only one image that scored the same as the reference had a lower dose. The reference image had a mean E of 3.31μSv, the image that scored the same had an E of 1.8μSv. Conclusion: Against the current clinical standard exposure factors of 70kVp, 20mAs and the use of an anti- scatter grid, one image proved to have a lower E whilst maintaining the same level of image quality and lesion visibility. It is suggested that the new exposure factors should be 60kVp, 20mAs and still include the use of an anti-scatter grid.
Resumo:
This paper reviews the literature for lowering of dose to paediatric patients through use of exposure factors and additional filtration. Dose reference levels set by The International Commission on Radiological Protection (ICRP) will be considered. Guidance was put in place in 1996 requires updating to come into line with modern imaging equipment. There is a wide range of literature that specifies that grids should not be used on paediatric patients. Although much of the literature advocates additional filtration, contrasting views on the relative benefits of using aluminium or copper filtration, and their effects on dose reduction and image quality can vary. Changing kVp and mAs has an effect on the dose to the patient and image quality. Collimation protects adjacent structures whilst reducing scattered radiation.
Resumo:
Purpose: To determine whether using different combinations of kVp and mAs with additional filtration can reduce the effective dose to a paediatric phantom whilst maintaining diagnostic image quality. Methods: 27 images of a paediatric AP pelvis phantom were acquired with different kVp, mAs and additional copper filtration. Images were displayed on quality controlled monitors with dimmed lighting. Ten diagnostic radiographers (5 students and 5 experienced radiographers) had eye tests to assess visual acuity before rating the images. Each image was rated for visual image quality against a reference image using 2 alternative forced choice software using a 5-point Likert scale. Physical measures (SNR and CNR) were also taken to assess image quality. Results: Of the 27 images rated, 13 of them were of acceptable image quality and had a dose lower than the image with standard acquisition parameters. Two were produced without filtration, 6 with 0.1mm and 5 with 0.2mm copper filtration. Statistical analysis found that the inter-rater and intra-rater reliability was high. Discussion: It is possible to obtain an image of acceptable image quality with a dose that is lower than published guidelines. There are some areas of the study that could be improved. These include using a wider range of kVp and mAs to give an exact set of parameters to use. Conclusion: Additional filtration has been identified as amajor tool for reducing effective dose whilst maintaining acceptable image quality in a 5 year old phantom.
Resumo:
Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.
Resumo:
Crossed classification models are applied in many investigations taking in consideration the existence of interaction between all factors or, in alternative, excluding all interactions, and in this case only the effects and the error term are considered. In this work we use commutative Jordan algebras in the study of the algebraic structure of these designs and we use them to obtain similar designs where only some of the interactions are considered. We finish presenting the expressions of the variance componentes estimators.