52 resultados para radar reflectivity-runoff model
Resumo:
The latest LHC data confirmed the existence of a Higgs-like particle and made interesting measurements on its decays into gamma gamma, ZZ*, WW*, tau(+)tau(-), and b (b) over bar. It is expected that a decay into Z gamma might be measured at the next LHC round, for which there already exists an upper bound. The Higgs-like particle could be a mixture of scalar with a relatively large component of pseudoscalar. We compute the decay of such a mixed state into Z gamma, and we study its properties in the context of the complex two Higgs doublet model, analysing the effect of the current measurements on the four versions of this model. We show that a measurement of the h -> Z gamma rate at a level consistent with the SM can be used to place interesting constraints on the pseudoscalar component. We also comment on the issue of a wrong sign Yukawa coupling for the bottom in Type II models.
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.
Resumo:
The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 x 10(-3) m. The experimental data reveal that the target erosion depth profile is a function of the angle. made by B with a horizontal line defined by z = 2 x 10(-3) m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle theta. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.
Resumo:
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimentally and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing capacitance to control the power delivered to the load.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.