57 resultados para Wind integration wind power forecasting
Resumo:
This paper deals with the computing simulation of the impact on permanent magnet synchronous generator wind turbines due to fifth harmonic content and grid voltage decrease. Power converter topologies considered in the simulations are the two-level and the three-level ones. The three-level converters are limited by unbalance voltages in the DC-link capacitors. In order to lessen this limitation, a new control strategy for the selection of the output voltage vectors is proposed. Controller strategies considered in the simulation are respectively based on proportional integral and fractional-order controllers. Finally, a comparison between the results of the simulations with the two controller strategies is presented in order to show the main advantage of the proposed strategy. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper is on an onshore variable speed wind turbine with doubly fed induction generator and under supervisory control. The control architecture is equipped with an event-based supervisor for the supervision level and fuzzy proportional integral or discrete adaptive linear quadratic as proposed controllers for the execution level. The supervisory control assesses the operational state of the variable speed wind turbine and sends the state to the execution level. Controllers operation are in the full load region to extract energy at full power from the wind while ensuring safety conditions required to inject the energy into the electric grid. A comparison between the simulations of the proposed controllers with the inclusion of the supervisory control on the variable speed wind turbine benchmark model is presented to assess advantages of these controls. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Resumo:
Para a diminuição da dependência energética de Portugal face às importações de energia, a Estratégia Nacional para a Energia 2020 (ENE 2020) define uma aposta na produção de energia a partir de fontes renováveis, na promoção da eficiência energética tanto nos edifícios como nos transportes com vista a reduzir as emissões de gases com efeito de estufa. No campo da eficiência energética, o ENE 2020 pretende obter uma poupança energética de 9,8% face a valores de 2008, traduzindo-se em perto de 1800 milhões de tep já em 2015. Uma das medidas passa pela aposta na mobilidade eléctrica, onde se prevê que os veículos eléctricos possam contribuir significativamente para a redução do consumo de combustível e por conseguinte, para a redução das emissões de CO2 para a atmosfera. No entanto, esta redução está condicionada pelas fontes de energia utilizadas para o abastecimento das baterias. Neste estudo foram determinados os consumos de combustível e as emissões de CO2 de um veículo de combustão interna adimensional representativo do parque automóvel. É também estimada a previsão de crescimento do parque automóvel num cenário "Business-as-Usual", através dos métodos de previsão tecnológica para o horizonte 2010-2030, bem como cenários de penetração de veículos eléctricos para o mesmo período com base no método de Fisher- Pry. É ainda analisado o impacto que a introdução dos veículos eléctricos tem ao nível dos consumos de combustível, das emissões de dióxido de carbono e qual o impacto que tal medida terá na rede eléctrica, nomeadamente no diagrama de carga e no nível de emissões de CO2 do Sistema Electroprodutor Nacional. Por fim, é avaliado o impacto dos veículos eléctricos no diagrama de carga diário português, com base em vários perfis de carga das baterias. A introdução de veículos eléctricos em Portugal terá pouca expressão dado que, no melhor dos cenários haverão somente cerca de 85 mil unidades em circulação, no ano de 2030. Ao nível do consumo de combustíveis rodoviários, os veículos eléctricos poderão vir a reduzir o consumo de gasolina até 0,52% e até 0,27% no consumo de diesel, entre 2010 e 2030, contribuindo ligeiramente uma menor dependência energética externa. Ao nível do consumo eléctrico, o abastecimento das baterias dos veículos eléctricos representará até 0,5% do consumo eléctrico total, sendo que parte desse abastecimento será garantido através de centrais de ciclo combinado a gás natural. Apesar da maior utilização deste tipo de centrais térmicas para produção de energia, tanto para abastecimento das viaturas eléctricas, como para o consumo em geral, verifica-se que em 2030, o nível de emissões do sistema electroprodutor será cerca de 46% inferior aos níveis registados em 2010, prevendo-se que atinja as 0,163gCO2/kWh produzido pelo Sistema Electroprodutor Nacional devido à maior quota de produção das fontes de energia renovável, como o vento, a hídrica ou a solar.
Resumo:
This paper is concerned with the protection of wind energy systems against the indirect effects of lightning. As wind energy is gaining increasing importance throughout the world, lightning damages involving wind energy systems have come to be regarded with more attention. Nevertheless, there are still very few studies in Portugal regarding lightning protection of wind energy systems using models of the Electro-Magnetic Transients Program (EMTP). Hence, a new case study is presented in this paper, based on a wind turbine with an interconnecting transformer, considering that lightning strikes the soil near the tower at a distance such that galvanic coupling occurs through the grounding electrode. Computer simulations obtained by using EMTP-RV are presented and conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM10 concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that lichens reacted physiologically in the polluted industrial area as evidenced by increased conductivity correlated to contamination level. The integration of temporal PM10 measurements and analysis of wind direction corroborated the importance of this industrialized region for air quality measurements and identified the relevance of traffic for the urban area.
Resumo:
This paper presents a programable perturbation and observation control implementation for a wind generation system and its power electronic converter. The objective of the method in this particular application is to adjust the power delivered to charge a battery to its maximum and allowable value, function of the real values of several parameters and their continuous variation, the most important the wind velocity and the turbine efficiency. Also, to improve the power throughput and to use the turbine and generator marginal zones of operation, an unusual power converter is used, allowing a wide range for the input voltage values. The implemented control is continuously measuring the actual power and looks for a new and powerful operation point. © 2014 IEEE.
Resumo:
This paper presents a programable perturbation and observation control implementation for a wind generation system and its power electronic converter. The objective of the method in this particular application is to adjust the power delivered to charge a battery to its maximum and allowable value, function of the real values of several parameters and their continuous variation, the most important the wind velocity and the turbine efficiency. Also, to improve the power throughput and to use the turbine and generator marginal zones of operation, an unusual power converter is used, allowing a wide range for the input voltage values. The implemented control is continuously measuring the actual power and looks for a new and powerful operation point. © 2014 IEEE.
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Mecânica /Energia
Resumo:
This paper is about a design of an urban area Darrieus VAWT, having self-start ability due to an innovative profile design named EN0005, avoiding the need of extra components or external electricity feed-in. An approach is presented to study the ability of a blade profile to offer self-start ability. Methodologies applied for the blade body and for profile development are reported. Field tests and main conclusions are presented to persuade for the arrangement of this design. (C) 2015 Elsevier Ltd. All rights reserved.