60 resultados para Models, Theoretical 


Relevância:

20.00% 20.00%

Publicador:

Resumo:

LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the electro-rheological behaviour of a series of four liquid crystal (LC) cyanobiphenyls with a number of carbon atoms in the alkyl group, ranging from five to eight (5CB–8CB). We present the flow curves for different temperatures and under the influence of an external electric field, ranging from 0 to 3 kV/mm, and the viscosity as a function of the temperature, for the same values of electric field, obtained for different shear rates. Theoretical interpretation of the observed behaviours is proposed in the framework of the continuum theory of Leslie–Ericksen for low molecular weight nematic LCs. In our analysis, the director alignment angle is only a function of the ratio between the shear rate and the square of the electric field – boundary conditions are neglected. By fitting the theoretical model to the experimental data, we are able to determine some viscosity coefficients and the dielectric anisotropy as a function of temperature. To interpret the behaviour of the flow curves near the nematic–isotropic transitions, we apply the continuum theory of Olmsted–Goldbart, which extends the theory of Leslie–Ericksen to the case where the degree of alignment of the LC molecules can also vary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino no 1º e no 2º Ciclos do Ensino Básico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica no Ramo de Automação e Electrónica Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionally graded composite materials can provide continuously varying properties, which distribution can vary according to a specific location within the composite. More frequently, functionally graded materials consider a through thickness variation law, which can be more or less smoother, possessing however an important characteristic which is the continuous properties variation profiles, which eliminate the abrupt stresses discontinuities found on laminated composites. This study aims to analyze the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. To this purpose, the properties of the particulate composite metal-ceramic outer layers, are estimated using Mod-Tanaka scheme and the dynamic analyses considers first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. The illustrative cases presented in this work, consider the influence of the shape functions interpolation domain, the properties through-thickness distribution, the influence of considering different materials, aspect ratios and boundary conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by epsilon(AA) and by epsilon(AB) = r epsilon(AA), respectively. The angle theta between the 2 A-patches on each particle is fixed at 601, 90 degrees or 120 degrees. For values of r below 1/2 and above a threshold r(th)(theta) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when theta decreases. We show that the mechanism that prevents phase separation for models with decreasing values of theta is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings ( loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of theta, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides an assessment of layerwise mixed models using least-squares formulation for the coupled electromechanical static analysis of multilayered plates. In agreement with three-dimensional (3D) exact solutions, due to compatibility and equilibrium conditions at the layers interfaces, certain mechanical and electrical variables must fulfill interlaminar C-0 continuity, namely: displacements, in-plane strains, transverse stresses, electric potential, in-plane electric field components and transverse electric displacement (if no potential is imposed between layers). Hence, two layerwise mixed least-squares models are here investigated, with two different sets of chosen independent variables: Model A, developed earlier, fulfills a priori the interiaminar C-0 continuity of all those aforementioned variables, taken as independent variables; Model B, here newly developed, rather reduces the number of independent variables, but also fulfills a priori the interlaminar C-0 continuity of displacements, transverse stresses, electric potential and transverse electric displacement, taken as independent variables. The predictive capabilities of both models are assessed by comparison with 3D exact solutions, considering multilayered piezoelectric composite plates of different aspect ratios, under an applied transverse load or surface potential. It is shown that both models are able to predict an accurate quasi-3D description of the static electromechanical analysis of multilayered plates for all aspect ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the discovery of the Higgs boson at the Large Hadron Collider the high energy physics community's attention has now turned to understanding the properties of the Higgs boson, together with the hope of finding more scalars during run 2. In this work we discuss scenarios where using a combination of three decays, involving the 125 GeV Higgs boson, the Z boson and at least one more scalar, an indisputable signal of CP-violation arises. We use a complex two-Higgs doublet model as a reference model and present some benchmark points that have passed all current experimental and theoretical constraints, and that have cross sections large enough to be probed during run 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.