46 resultados para Information Behaviour
Filtro por publicador
- Repository Napier (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (77)
- Biodiversity Heritage Library, United States (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (27)
- Central European University - Research Support Scheme (2)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (10)
- Claremont University Consortium, United States (1)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (27)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons @ DU | University of Denver Research (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- Galway Mayo Institute of Technology, Ireland (2)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (4)
- Instituto Politécnico do Porto, Portugal (96)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (20)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (46)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (108)
- Scielo España (1)
- Scielo Saúde Pública - SP (44)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (11)
- Universidade do Minho (50)
- Universidade dos Açores - Portugal (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (22)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (196)
- University of Southampton, United Kingdom (1)
Resumo:
Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.