79 resultados para Image Simulation
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.
Resumo:
The discovery of X-rays was undoubtedly one of the greatest stimulus for improving the efficiency in the provision of healthcare services. The ability to view, non-invasively, inside the human body has greatly facilitated the work of professionals in diagnosis of diseases. The exclusive focus on image quality (IQ), without understanding how they are obtained, affect negatively the efficiency in diagnostic radiology. The equilibrium between the benefits and the risks are often forgotten. It is necessary to adopt optimization strategies to maximize the benefits (image quality) and minimize risk (dose to the patient) in radiological facilities. In radiology, the implementation of optimization strategies involves an understanding of images acquisition process. When a radiographer adopts a certain value of a parameter (tube potential [kVp], tube current-exposure time product [mAs] or additional filtration), it is essential to know its meaning and impact of their variation in dose and image quality. Without this, any optimization strategy will be a failure. Worldwide, data show that use of x-rays has been increasingly frequent. In Cabo Verde, we note an effort by healthcare institutions (e.g. Ministry of Health) in equipping radiological facilities and the recent installation of a telemedicine system requires purchase of new radiological equipment. In addition, the transition from screen-films to digital systems is characterized by a raise in patient exposure. Given that this transition is slower in less developed countries, as is the case of Cabo Verde, the need to adopt optimization strategies becomes increasingly necessary. This study was conducted as an attempt to answer that need. Although this work is about objective evaluation of image quality, and in medical practice the evaluation is usually subjective (visual evaluation of images by radiographer / radiologist), studies reported a correlation between these two types of evaluation (objective and subjective) [5-7] which accredits for conducting such studies. The purpose of this study is to evaluate the effect of exposure parameters (kVp and mAs) when using additional Cooper (Cu) filtration in dose and image quality in a Computed Radiography system.
Resumo:
The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represent significant diagnostic challenges. SPECT/CT Image fusion can provide missing anatomical and bone structure information to functional imaging, which is particularly useful to increase diagnosis certainty of bone pathology. However, due to SPECT acquisition duration, patient’s involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We aimed at designing an ankle and foot immobilizing device and measuring its efficacy at improving image fusion. Methods: We enrolled 20 patients undergoing distal lower-limb SPECT/CT of the ankle and the foot with and without a foot holder. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomical landmarks also visible on bone scintigraphy. Analysis of variance was performed for statistical analysis. Results: The obtained absolute average difference without and with support was 5.1±5.2 mm (mean±SD) and 3.1±2.7 mm, respectively, which is significant (p<0.001). Conclusion: The introduction of the foot holder significantly decreases misalignment between SPECT and CT images, which may have clinical influence in the precise localization of foot and ankle pathology.
Resumo:
The contribution of the evapotranspiration from a certain region to the precipitation over the same area is referred to as water recycling. In this paper, we explore the spatiotemporal links between the recycling mechanism and the Iberian rainfall regime. We use a 9 km resolution Weather Research and Forecasting simulation of 18 years (1990-2007) to compute local and regional recycling ratios over Iberia, at the monthly scale, through both an analytical and a numerical recycling model. In contrast to coastal areas, the interior of Iberia experiences a relative maximum of precipitation in spring, suggesting a prominent role of land-atmosphere interactions on the inland precipitation regime during this period of the year. Local recycling ratios are the highest in spring and early summer, coinciding with those areas where this spring peak of rainfall represents the absolute maximum in the annual cycle. This confirms that recycling processes are crucial to explain the Iberian spring precipitation, particularly over the eastern and northeastern sectors. Average monthly recycling values range from 0.04 in December to 0.14 in June according to the numerical model and from 0.03 in December to 0.07 in May according to the analytical procedure. Our analysis shows that the highest values of recycling are limited by the coexistence of two necessary mechanisms: (1) the availability of sufficient soil moisture and (2) the occurrence of appropriate synoptic configurations favoring the development of convective regimes. The analyzed surplus of rainfall in spring has a critical impact on agriculture over large semiarid regions of the interior of Iberia.
Resumo:
Purpose: To compare image quality and effective dose when the 10 kVp rule is applied with manual and AEC mode in PA chest X-ray. Methods and Materials: A total of 68 images (with and without lesions) were acquired of an anthropomorphic chest phantom in a Wolverson Arcoma X-ray unit. The images were evaluated against a reference image using image quality criteria and the 2 alternative forced choice (2 AFC) method by five radiographers. The effective dose was calculated using PCXMC software using the exposure parameters and DAP. The exposure index (lgM) was recorded. Results: Exposure time decreases considerably when applying the 10 kVp rule in manual mode (50%-28%) compared to AEC mode (36%-23%). Statistical differences for effective dose between several AEC modes were found (p=0.002). The effective dose is lower when using only the right AEC ionization chamber. Considering image quality, there are no statistical differences (p=0.348) between the different AEC modes for images with no lesions. Using a higher kVp value the lgM values will also increase. The lgM values showed significant statistical differences (p=0.000). The image quality scores did not present statistically significant differences (p=0.043) for the images with lesions when comparing manual with AEC modes. Conclusion: In general, the dose is lower in the manual mode. By using the right AEC ionising chamber the effective dose will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the detectability of the lesions.
Resumo:
Purpose: To assess image quality using PGMI (perfect, good, moderate, inadequate) scale in digital mammography examinations acquired in DR systems. Identify the main failures and propose corrective actions. Evaluate the most typical breast density. Methods and Materials: Clinical image quality criteria were evaluated considering mammograms acquired in 13 DR systems and classified according to PGMI scale using the criteria described in European Commission guidelines for radiographers. The breast density was assessed according to ACR recommendations. The data were collected on the acquisition system monitor to reproduce the daily practice of the radiographer. Results: The image quality criteria were evaluated in 3044 images. The criteria were fully achieved in 41% of the images that were classified as P (perfect), 31 % of the images were classified as M (moderate), 20% G (good) and 9% I (inadequate). The main cause of inadequate image quality was absence of all breast tissue in the image, skin folders in the pectoral muscle and in the infra-mammary angle. The higher number of failures occurred in MLO projections (809 out of 1022). The most represented (36%) breast type was type 2 (25-50% glandular tissue). Conclusion: Incorrect radiographic technique was frequently detected suggesting potential training needs and poor communication between the team members (radiographer and radiologists). Further correlations are necessary to identify the main causes for the failures, namely specific education and training in digital mammography and workload.
Resumo:
We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful in the simulation of ionospheric scintillation effects during the transmission of GNSS signals. The method requires only the knowledge of parameters S4 (scintillation index) and σΦ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The Zhang algorithm is used to produce Nakagami-distributed signals from a set of Gaussian autoregressive processes.
Resumo:
This paper presents a systemic modeling for a PV system integrated into an electric grid. The modeling includes models for a DC-DC boost converter and a DC-AC two-level inverter. Classical or fuzzy PI controllers with pulse width modulation by space vector modulation associated with sliding mode control is used for controlling the PV system and power factor control is introduced at the output of the system. Comprehensive performance simulation studies are carried out with the modeling of the DC-DC boost converter followed by a two-level power inverter in order to compare the performance with the experimental results obtained during in situ operation with three commercial inverters. Also, studies are carried out to assess the quality of the energy injected into the electric grid in terms of harmonic distortion. Finally, conclusions regarding the integration of the PV system into the electric grid are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
This work demonstrates the feasibility of using polymeric micro- and nanofiber-composed films and liquid crystals as electrically switchable scattering light shutters. We present a concept of electro-optic device based on an innovative combination of two mature technologies: optics of nematic liquid crystals and electrospinning of nanofibers. These devices have electric and optical characteristics far superior to other comparable methods. The simulation presented shows results that are highly consistent with those of experiments and that explain the working mechanism of the devices.
Resumo:
Objectives: Children have a greater risk from radiation, per unit dose, due to increased radiosensitivity and longer life expectancies. It is of paramount importance to reduce the radiation dose received by children. This research concerns chest CT examinations on paediatric patients. The purpose of this study was to compare the image quality and the dose received from imaging with images reconstructed with filtered back projection (FBP) and five strengths of Sinogram-Affirmed Iterative Reconstruction (SAFIRE). Methods: Using a multi-slice CT scanner, six series of images were taken of a paediatric phantom. Two kVp values (80 and 110), 3 mAs values (25, 50 and 100) and 2 slice thicknesses (1 mm and 3 mm) were used. All images were reconstructed with FBP and five strengths of SAFIRE. Ten observers evaluated visual image quality. Dose was measured using CT-Expo. Results: FBP required a higher dose than all SAFIRE strengths to obtain the same image quality for sharpness and noise. For sharpness and contrast image quality ratings of 4, FBP required doses of 6.4 and 6.8 mSv respectively. SAFIRE 5 required doses of 3.4 and 4.3 mSv respectively. Clinical acceptance rate was improved by the higher voltage (110 kV) for all images in comparison to 80 kV, which required a higher dose for acceptable image quality. 3 mm images were typically better quality than 1 mm images. Conclusion: SAFIRE 5 was optimal for dose reduction and image quality.
Resumo:
Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP). Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithms has the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently. Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction. Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014). Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality. Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiation sensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.