52 resultados para Familial characterization
Resumo:
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.
Resumo:
New cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(LL)(1-BuIm)] [Z], with (LL) = 2PPh(3) or DPPE, and Z = CF3SO3-, PF6-, BPh4-, have been synthesized and fully characterized. Spectroscopic and electrochemical studies revealed that the electronic properties of the coordinated 1-butylimidazole were clearly influenced by the nature of the phosphane coligands (LL) and also by the different counter ions. The solid state structures of the six complexes determined by X-ray crystallographic studies, confirmed the expected distorted three-legged piano stool structure. However the geometry of the 1-butylimidazole ligand was found considerably different in all six compounds, being governed by the stereochemistry of the mono and bidentate coligands (PPh3 or DPPE).
Resumo:
The knowledge of the anisotropic properties beneath the Iberian Peninsula and Northern Morocco has been dramatically improved since late 2007 with the analysis of the data provided by the dense TopoIberia broadband seismic network, the increasing number of permanent stations operating in Morocco, Portugal and Spain, and the contribution of smaller scale/higher resolution experiments. Results from the two first TopoIberia deployments have evidenced a spectacular rotation of the fast polarization direction (FPD) along the Gibraltar Arc, interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Alboran Sea, and a rather uniform N100 degrees E FPD beneath the central Iberian Variscan Massif, consistent with global mantle flow models taking into account contributions of surface plate motion, density variations and net lithosphere rotation. The results from the last Iberarray deployment presented here, covering the northern part of the Iberian Peninsula, also show a rather uniform FPD orientation close to N100 degrees E, thus confirming the previous interpretation globally relating the anisotropic parameters to the LPO of mantle minerals generated by mantle flow at asthenospheric depths. However, the degree of anisotropy varies significantly, from delay time values of around 0.5 s beneath NW Iberia to values reaching 2.0 sin its NE comer. The anisotropic parameters retrieved from single events providing high quality data also show significant differences for stations located in the Variscan units of NW Iberia, suggesting that the region includes multiple anisotropic layers or complex anisotropy systems. These results allow to complete the map of the anisotropic properties of the westernmost Mediterranean region, which can now be considered as one of best constrained regions worldwide, with more than 300 sites investigated over an area extending from the Bay of Biscay to the Sahara platform. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The rheological and structural characteristics of acetoxypropylcellulose (APC) nematic melt are studied at shear rates ranging from 10 s(-1) to 1000 s(-1) which are relevant to extrusion based processes. APC shows a monotonic shear thinning behavior over the range of shear rates tested. The negative extrudate-swell shows a minimum when a critical shear rate (gamma) over dot(c) is reached. For shear rates smaller than (gamma) over dot(c), the flow-induced texture consists of two set of bands aligned parallel and normal to the flow direction. At shear rates larger than (gamma) over dot(c), the flow induced texture is reminiscent of a 2 fluids structure. Close to the shearing walls, domains elongated along the flow direction and stacked along the vorticity are imaged with POM, whereas SALS patterns indicate that the bulk of the sheared APC is made of elliptical domains oriented along the vorticity. No full nematic alignment is achieved at the largest shear rate tested. Below (gamma) over dot(c), the stress relaxation is described by a stretched exponential. Above (gamma) over dot(c), the stress relaxation is described by a fast and a slow process. The latter coincides with the growth of normal bands thicknesses, as the APC texture after flow cessation consists of two types of bands with parallel and normal orientations relative to the flow direction. Both bands thicknesses do not depend on the applied shear rate, in contrast to their orientation. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The electrorheological (ER) effect is known as the change in the apparent viscosity upon the application of an external electric field perpendicular to the flow direction. In this work we present the electrorheological behaviour of suspensions in silicone oil of two different dispersed phases: foams of liquid crystal 4-n-penthyl-4'-cyanobiphenyl (5CB) encapsulated in polyvinyl alcohol (PVA) and nano/microspheres of 5CB encapsulated in silica. We will present the viscosity curves under the application of an electric field ranging between 0 and 3 kV mm(-1). The ER effect was observed for the suspensions of 5CB/PVA but not in the case of 5CB/silica. For the case of the suspensions of 5CB/PVA, the effect of the viscosity of the continuum phase and the concentration of the dispersed phase was analysed, showing that the enhancement of the viscosity of the suspension increases with the concentration, as expected, however the continuum phase viscosity has no significant effect, at least in the investigated viscosity range.
Resumo:
The solubilities of two C-tetraalkylcalix[4]resorcinarenes, namely C-tetramethylcalix[4]resorcinarene and C-tetrapentylcalix[4]resorcinarene, in supercritical carbon dioxide (SCCO2) were measured in a flow-type apparatus at a temperature range from (313.2 to 333.2) K and at pressures from (12.0 to 35.0) MPa. The C-tetraalkylcalix[4]resorcinarenes were synthesized applying our optimized procedure and fully characterized by means of gel permeation chromatography, infrared and nuclear magnetic resonance spectroscopy. The solubilities of the C-tetraalkylcalix[4]resorcinarenes in SCCO2 were determined by analysis of the extracts obtained by HPLC with ultraviolet (UV) detection methodology adapted by our team. Four semiempirical density-based models, and the SoaveRedlichKwong cubic equation of state (SRK CEoS) with classical mixing rules, were applied to correlate the solubility of the calix[4]resorcinarenes in the SC CO2. The physical properties required for the modeling were estimated and reported.
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.