51 resultados para ELECTROCHEMICAL OXIDATION
Resumo:
Aroylhydrazone oxidovanadium compounds, viz, the oxidoethoxidovanadium(V) [VO(OEt)L1] (1) (H2L =salicylaldehyde-2-hydroxybenzoylhydrazone), the salt like dioxidovanadium(V) (NH3CH2CH2OH)(+) [VO2L](-) (2), the mixed-ligand oxidovanadium(V) [VO(hq)L](Hhq = 8-hydroxyquinoline) (3) and the vanadium(IV) [VO(phen)L] (phen=1,10-phenanthroline) (4) complexes (3 and 4 obtained by the first time), have been tested as catalysts for solvent-free microwave-assisted oxidation of aromatic and alicyclic secondary alcohols with tert-butylhydroperoxide. A facile, efficient and selective solvent-free synthesis of ketones was achieved with yields up to 99% (TON= 497, TOF= 993 h(-1) for 3) and 58% (TON =291, TOF= 581 h(-1) for 2) for acetophenone and cyclohexanone, respectively, after 30 min under low power (25W) microwave irradiation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Oxidovanadium complexes and, to a less extent, some non-oxido ones, are widely used as catalysts or catalyst precursors for various oxidative catalytic reactions by H2O2, (BuOOH)-Bu-t or O-2 under mild conditions. Oxidation reactions (oxidation of alkanes and alcohols, epoxidation of alkenes and allylic alcohols, oxidative bromination, sulfoxidation and oxidative Strecker reactions) of organic compounds are the most relevant ones and are reviewed considering the recent advances in the last five years (2010-2014). The main types of both homogeneous and supported vanadium catalysts and the most efficient catalytic systems in the different reactions are presented and compared. The proposed mechanisms of various catalytic oxidation processes are also outlined. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The reaction between 2-aminobenzenesulfonic acid and 2-hydroxy-3-methoxybenzaldehyde produces the acyclic Schiff base 2-[(2-hydroxy-3-methoxyphenyl) methylideneamino] benzenesulfonic acid (H2L center dot 3H(2)O) (1). In situ reactions of this compound with Cu(II) salts and, eventually, in the presence of pyridine (py) or 2,2'-bipyridine (2,2'-bipy) lead to the formation of the mononuclear complexes [CuL(H2O)(2)] (2) and [CuL(2,2'-bipy)]center dot DMF center dot H2O (3) and the diphenoxo-bridged dicopper compounds [CuL(py)](2) (4) and [CuL(EtOH)](2)center dot 2H(2)O (5). In 2-5 the L-2-ligand acts as a tridentate chelating species by means of one of the O-sulfonate atoms, the O-phenoxo and the N-atoms. The remaining coordination sites are then occupied by H2O (in 2), 2,2'-bipyridine (in 3), pyridine (in 4) or EtOH (in 5). Hydrogen bond interactions resulted in R-2(2) (14) and in R-4(4)(12) graph sets leading to dimeric species (in 2 and 3, respectively), 1D chain associations (in 2 and 5) or a 2D network (1). Complexes 2-5 are applied as selective catalysts for the homogeneous peroxidative (with tert-butylhydroperoxide, TBHP) oxidation of primary and secondary alcohols, under solvent-and additive-free conditions and under low power microwave (MW) irradiation. A quantitative yield of acetophenone was obtained by oxidation of 1-phenylethanol with compound 4 [TOFs up to 7.6 x 10(3) h(-1)] after 20 min of MW irradiation, whereas the oxidation of benzyl alcohol to benzaldehyde is less effective (TOF 992 h(-1)). The selectivity of 4 to oxidize the alcohol relative to the ene function is demonstrated when using cinnamyl alcohol as substrate.
Resumo:
Coupling five rigid or flexible bis(pyrazolato)based tectons with late transition metal ions allowed us to isolate 18 coordination polymers (CPs). As assessed by thermal analysis, all of them possess a remarkable thermal stability, their decomposition temperatures lying in the range of 340-500 degrees C. As demonstrated by N-2 adsorption measurements at 77 K, their Langmuir specific surface areas span the rather vast range of 135-1758 m(2)/g, in agreement with the porous or dense polymeric architectures retrieved by powder X-ray diffraction structure solution methods. Two representative families of CPs, built up with either rigid or flexible spacers, were tested as catalysts in (0 the microwave-assisted solvent-free peroxidative oxidation of alcohols by t-BuOOH, and (ii) the peroxidative oxidation of cydohexane to cydohexanol and cydohexanone by H2O2 in acetonitrile. Those CPs bearing the rigid spacer, concurrently possessing higher specific surface areas, are more active than the corresponding ones with the flexible spacer. Moreover, the two copper(I)-containing CPs investigated exhibit the highest efficiency in both reactions, leading selectively to a maximum product yield of 92% (and TON up to 1.5 x 10(3)) in the oxidation of 1-phenylethanol and of 11% in the oxidation of cydohexane, the latter value being higher than that granted by the current industrial process.
Resumo:
This review concerns metal-catalyzed reactions of oxidation of alcohols to the respective products, mainly ketones and aldehydes, mostly within the period of 2010–2014. Both conventional and unconventional systems, not only with usual reagents, but also with uncommon and prospective ones, are overviewed, with recently achieved developments.
Resumo:
A one-pot template reaction of sodium 2-(2-(dicyanomethylene) hydrazinyl) benzenesulfonate (NaHL1) with water and manganese(II) acetate tetrahydrate led to the mononuclear complex [Mn(H2O)(6)](HL1a)(2)center dot 4H(2)O (1), where (HL1a) -= 2-(SO3-)C6H4(NH)=N=C(C N) (CONH2) is the carboxamide species derived from nucleophilic attack of water on a cyano group of (HL1) . The copper tetramer [Cu-4(H2O)(10)(-) (1 kappa N: kappa O-2: kappa O, 2 kappa N: k(O)-L-2)(2)]center dot 2H(2)O (2) was obtained from reaction of Cu(NO3)(2)center dot 2.5H(2)O with sodium 5-(2( 4,4-dimethyl-2,6-dioxocyclohexylidene) hydrazinyl)-4-hydroxybenzene-1,3-disulfonate (Na2H2L2). Both complexes were characterized by elemental analysis, IR spectroscopy, ESI-MS and single crystal X-ray diffraction. They exhibit a high catalytic activity for the solvent-and additive-free microwave (MW) assisted oxidation of primary and secondary alcohols with tert-butylhydroperoxide, leading to yields of the oxidized products up to 85.5% and TOFs up to 1.90 x 103 h(-1) after 1 h under low power (5-10 W) MW irradiation. Moreover, the heterogeneous catalysts are easily recovered and reused, at least for three consecutive cycles, maintaining 89% of the initial activity and a high selectivity.