47 resultados para Distributed model predictive control
Resumo:
This paper presents a new communication architecture to enable the remote control, monitoring and debug of embedded-system controllers designed using IOPT Petri nets. IOPT Petri nets and the related tools (http://gres.uninova.pt) have been used as a rapid prototyping and development framework, including model-checking, simulation and automatic code generation tools. The new architecture adds remote operation capabilities to the controllers produced by the automatic code generators, enabling quasi-real-time remote debugging and monitoring using the IOPT simulator tool. Furthermore, it enables the creation of graphical user interfaces for remote operation and the development of distributed systems where a Petri net model running on a central system supervises the actions of multiple remote subsystems. © 2015 IEEE.
Resumo:
A correlation and predictive scheme for the viscosity and self-diffusivity of liquid dialkyl adipates is presented. The scheme is based on the kinetic theory for dense hard-sphere fluids, applied to the van der Waals model of a liquid to predict the transport properties. A "universal" curve for a dimensionless viscosity of dialkyl adipates was obtained using recently published experimental viscosity and density data of compressed liquid dimethyl (DMA), dipropyl (DPA), and dibutyl (DBA) adipates. The experimental data are described by the correlation scheme with a root-mean-square deviation of +/- 0.34 %. The parameters describing the temperature dependence of the characteristic volume, V-0, and the roughness parameter, R-eta, for each adipate are well correlated with one single molecular parameter. Recently published experimental self-diffusion coefficients of the same set of liquid dialkyl adipates at atmospheric pressure were correlated using the characteristic volumes obtained from the viscosity data. The roughness factors, R-D, are well correlated with the same single molecular parameter found for viscosity. The root-mean-square deviation of the data from the correlation is less than 1.07 %. Tests are presented in order to assess the capability of the correlation scheme to estimate the viscosity of compressed liquid diethyl adipate (DEA) in a range of temperatures and pressures by comparison with literature data and of its self-diffusivity at atmospheric pressure in a range of temperatures. It is noteworthy that no data for DEA were used to build the correlation scheme. The deviations encountered between predicted and experimental data for the viscosity and self-diffusivity do not exceed 2.0 % and 2.2 %, respectively, which are commensurate with the estimated experimental measurement uncertainty, in both cases.