49 resultados para Control constraint
Resumo:
This paper describes the use of a Control Banding Tool to assess and further control of exposure of nanoparticles emitted during welding operations. The tool was applied to Metal Active Gas (MAG) arc welding of mild and stainless steel, providing semi-quantitative data on the process, so that protection measures could be derived, e.g. exhaust gas ventilation by hoods, local ventilation devices and containment measures. This tool is quite useful to compare and evaluate the characteristics of arc welding procedures so that more eco-friendly processes could be preferred over the more potentially noxious ones.
Resumo:
This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7m3 microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900V/cm, 65μs pulses of 50Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. © 2014 Elsevier B.V.
Resumo:
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.
Resumo:
In the framework of multibody dynamics, the path motion constraint enforces that a body follows a predefined curve being its rotations with respect to the curve moving frame also prescribed. The kinematic constraint formulation requires the evaluation of the fourth derivative of the curve with respect to its arc length. Regardless of the fact that higher order polynomials lead to unwanted curve oscillations, at least a fifth order polynomials is required to formulate this constraint. From the point of view of geometric control lower order polynomials are preferred. This work shows that for multibody dynamic formulations with dependent coordinates the use of cubic polynomials is possible, being the dynamic response similar to that obtained with higher order polynomials. The stabilization of the equations of motion, always required to control the constraint violations during long analysis periods due to the inherent numerical errors of the integration process, is enough to correct the error introduced by using a lower order polynomial interpolation and thus forfeiting the analytical requirement for higher order polynomials.