33 resultados para single board multisensor unit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain dopamine transporters imaging by Single Emission Tomography (SPECT) with 123I-FP-CIT (DaTScanTM) has become an important tool in the diagnosis and evaluation of Parkinson syndromes.This diagnostic method allows the visualization of a portion of the striatum – where healthy pattern resemble two symmetric commas - allowing the evaluation of dopamine presynaptic system, in which dopamine transporters are responsible for dopamine release into the synaptic cleft, and their reabsorption into the nigrostriatal nerve terminals, in order to be stored or degraded. In daily practice for assessment of DaTScan TM, it is common to rely only on visual assessment for diagnosis. However, this process is complex and subjective as it depends on the observer’s experience and it is associated with high variability intra and inter observer. Studies have shown that semiquantification can improve the diagnosis of Parkinson syndromes. For semiquantification, analysis methods of image segmentation using regions of interest (ROI) are necessary. ROIs are drawn, in specific - striatum - and in nonspecific – background – uptake areas. Subsequently, specific binding ratios are calculated. Low adherence of semiquantification for diagnosis of Parkinson syndromes is related, not only with the associated time spent, but also with the need of an adapted database of reference values for the population concerned, as well as, the examination of each service protocol. Studies have concluded, that this process increases the reproducibility of semiquantification. The aim of this investigation was to create and validate a database of healthy controls for Dopamine transporters with DaTScanTM named DBRV. The created database has been adapted to the Nuclear Medicine Department’s protocol, and the population of Infanta Cristina’s Hospital located in Badajoz, Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity associated with fast growing of B2B and the lack of a (complete) suite of open standards makes difficulty to maintain the underlying collaborative processes. Aligned to this challenge, this paper aims to be a contribution to an open architecture of logistics and transport processes management system. A model of an open integrated system is being defined as an open computational responsibility from the embedded systems (on-board) as well as a reference implementation (prototype) of a host system to validate the proposed open interfaces. Embedded subsystem can, natively, be prepared to cooperate with other on-board units and with IT-systems in an infrastructure commonly referred to as a center information system or back-office. In interaction with a central system the proposal is to adopt an open framework for cooperation where the embedded unit or the unit placed somewhere (land/sea) interacts in response to a set of implemented capabilities.