35 resultados para multivariate optimization
Resumo:
The optimal design of cold-formed steel columns is addressed in this paper, with two objectives: maximize the local-global buckling strength and maximize the distortional buckling strength. The design variables of the problem are the angles of orientation of cross-section wall elements the thickness and width of the steel sheet that forms the cross-section are fixed. The elastic local, distortional and global buckling loads are determined using Finite Strip Method (CUFSM) and the strength of cold-formed steel columns (with given length) is calculated using the Direct Strength Method (DSM). The bi-objective optimization problem is solved using the Direct MultiSearch (DMS) method, which does not use any derivatives of the objective functions. Trade-off Pareto optimal fronts are obtained separately for symmetric and anti-symmetric cross-section shapes. The results are analyzed and further discussed, and some interesting conclusions about the individual strengths (local-global and distortional) are found.
Resumo:
A multiobjective approach for optimization of passive damping for vibration reduction in sandwich structures is presented in this paper. Constrained optimization is conducted for maximization of modal loss factors and minimization of weight of sandwich beams and plates with elastic laminated constraining layers and a viscoelastic core, with layer thickness and material and laminate layer ply orientation angles as design variables. The problem is solved using the Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and solutions are compared with alternative ones obtained using genetic algorithms.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriate for the load capacity installed. At the present time there are no standard specimen's geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriate for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress distributions on the loading directions are uniform and maximum with two limit phase shift loading conditions (delta = 0 degrees and (delta = 180 degrees). Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests
Resumo:
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.
Resumo:
This paper presents an optimization study of a distillation column for methanol and aqueous glycerol separation in a biodiesel production plant. Considering the available physical data of the column configuration, a steady state model was built for the column using Aspen-HYSYS as process simulator. Several sensitivity analysis were performed in order to better understand the relation between the variables of the distillation process. With the information obtained by the simulator, it is possible to define the best range for some operational variables that maintain composition of the desired product under specifications and choose operational conditions to minimize energy consumptions.