51 resultados para movement systems
Resumo:
Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil Perfil Estruturas
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems
Resumo:
The increasing integration of larger amounts of wind energy into power systems raises important operational issues, such as the balance between power generation and demand. The pumped storage hydro (PSH) units are one possible solution to mitigate this problem, once they can store the excess of energy in the periods of higher generation and lower demand. However, the behaviour of a PSH unit may differ considerably from the expected in terms of wind power integration when it operates in a liberalized electricity market under a price-maker context. In this regard, this paper models and computes the optimal PSH weekly scheduling in a price-taker and price-maker scenarios, either when the PSH unit operates in standalone and integrated in a portfolio of other generation assets. Results show that the price-maker standalone PSH will integrate less wind power in comparison with the price-taker situation. Moreover, when the PSH unit is integrated in a portfolio with a base load power plant, the role of the price elasticity of demand may completely change the operational profile of the PSH unit. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: multimodality environment; requirement for greater understanding of the imaging technologies used, the limitations of these technologies, and how to best interpret the results; dose optimization; introduction of new techniques; current practice and best practice; incidental findings, in low-dose CT images obtained as part of the hybrid imaging process, are an increasing phenomenon with advancing CT technology; resultant ethical and medico-legal dilemmas; understanding limitations of these procedures important when reporting images and recommending follow-up; free-response observer performance study was used to evaluate lesion detection in low-dose CT images obtained during attenuation correction acquisitions for myocardial perfusion imaging, on two hybrid imaging systems.
Resumo:
Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.
Resumo:
This paper provides a review of antennas applied for indoor positioning or localization systems. The desired requirements of those antennas when integrated in anchor nodes (reference nodes) are discussed, according to different localization techniques and their performance. The described antennas will be subdivided into the following sections according to the nature of measurements: received signal strength (RSS), time of flight (ToF), and direction of arrival (DoA). This paper intends to provide a useful guide for antenna designers who are interested in developing suitable antennas for indoor localization systems.
Resumo:
A pentagonal patch-excited sectorized antenna (SA) suitable for 2.4-2.5 GHz localization systems was studied and developed. The integration of six patch-excited structures converges into a sectorized antenna called Hive5 that provides gain improvement compared to a patch antenna, maximum variation of 3 dB beam width over the radiation pattern and circular polarization (CP). This antenna is presented and analyzed taking into account the tap length and the flare angle. The proposed antenna in combination with a RF-Switch provides a cost effective solution for localization based on Wireless Sensor Networks (WSN) and will be used for implementing angle of arrival (AoA) techniques combined with RF fingerprinting techniques.
Resumo:
The increasing integration of wind energy in power systems can be responsible for the occurrence of over-generation, especially during the off-peak periods. This paper presents a dedicated methodology to identify and quantify the occurrence of this over-generation and to evaluate some of the solutions that can be adopted to mitigate this problem. The methodology is applied to the Portuguese power system, in which the wind energy is expected to represent more than 25% of the installed capacity in a near future. The results show that the pumped-hydro units will not provide enough energy storage capacity and, therefore, wind curtailments are expected to occur in the Portuguese system. Additional energy storage devices can be implemented to offset the wind energy curtailments. However, the investment analysis performed show that they are not economically viable, due to the present high capital costs involved.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.
Resumo:
The iron(III) complexes [H(EtOH)][FeCl2(L)(2)] (1), [H(2)bipy](1/2)[FeCl2(L)(2)].DMF (2) and [FeCl2(L)(2,2'-bipy)] (3) (L = 3-amino-2-pyrazinecarboxylate; H(2)bipy = doubly protonated 4,4'-bipyridine; 2,2'-bipy = 2,2'-bipyridine, DMF = dimethylformamide) have been synthesized and fully characterized by IR, elemental and single-crystal X-ray diffraction analyses, as well as by electrochemical methods. Complexes 1 and 2 have similar mononuclear structures containing different guest molecules (protonated ethanol for 1 and doubly protonated 4,4'-bipyridine for 2) in their lattices, whereas the complex 3 has one 3-amino-2-pyrazinecarboxylate and a 2,2'-bipyridine ligand. They show a high catalytic activity for the low power (10 W) solvent-free microwave assisted peroxidative oxidation of 1-phenylethanol, leading, in the presence of TEMPO, to quantitative yields of acetophenone [TOFs up to 8.1 x 10(3) h(-1), (3)] after 1 h. Moreover, the catalysts are of easy recovery and reused, at least for four consecutive cycles, maintaining 83 % of the initial activity and concomitant rather high selectivity. 3-Amino-2-pyrazinecarboxylic acid is used to synthesize three new iron(III) complexes which act as heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation of 1-phenylethanol.
Resumo:
This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I- V and the P- V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I- V and the P- V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC-DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system. © 2015 Elsevier Ltd.
Resumo:
For an interval map, the poles of the Artin-Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power [zeta(F) (z)](p) of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function zeta(f)(z) only has poles in the unit disk, in the p-periodic nonautonomous case [zeta(F)(z)](p) may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [zeta(F)(z)](p) in this context. As we will see, these zeros play an important role in the spectral classification of these systems.
Resumo:
Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering