41 resultados para feed to gain ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Gestão Estratégica das Relações Públicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biosignals analysis has become widespread, upstaging their typical use in clinical settings. Electrocardiography (ECG) plays a central role in patient monitoring as a diagnosis tool in today's medicine and as an emerging biometric trait. In this paper we adopt a consensus clustering approach for the unsupervised analysis of an ECG-based biometric records. This type of analysis highlights natural groups within the population under investigation, which can be correlated with ground truth information in order to gain more insights about the data. Preliminary results are promising, for meaningful clusters are extracted from the population under analysis. © 2014 EURASIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the role that decision analysis plays in helping engineers to gain a greater understanding of the problems they face. The need of structured decision analysis is highlighted as well as the use of multiple criteria decision analysis to tackle sustainability issues with emphasis in the use of MACBETH approach. Some insights from a Portuguese Summer Course on engineering for sustainable development are presented namely the students 'and teacher perceptions about the module of decision analysis for sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom. Methods: Images were acquired by varying a set of parameters: positions (antero-posterior (AP), posteroanterior (PA) and lateral), kilo-voltage peak (kVp) (66-90), source-to-image distance (SID) (150 to 200cm), broad focus and the use of a grid (grid in/out) to analyse the impact on E and image quality (IQ). IQ was analysed applying two approaches: objective [contrast-to-noise-ratio/(CNR] and perceptual, using 5 observers. Monte-Carlo modelling was used for dose estimation. Cohen’s Kappa coefficient was used to calculate inter-observer-variability. The angle was measured using Cobb’s method on lateral projections under different imaging conditions. Results: PA promoted the lowest effective dose (0.013 mSv) compared to AP (0.048 mSv) and lateral (0.025 mSv). The exposure parameters that allowed lower dose were 200cm SID, 90 kVp, broad focus and grid out for paediatrics using an Agfa CR system. Thirty-seven images were assessed for IQ and thirty-two were classified adequate. Cobb angle measurements varied between 16°±2.9 and 19.9°±0.9. Conclusion: Cobb angle measurements can be performed using the lowest dose with a low contrast-tonoise ratio. The variation on measurements for this was ±2.9° and this is within the range of acceptable clinical error without impact on clinical diagnosis. Further work is recommended on improvement to the sample size and a more robust perceptual IQ assessment protocol for observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia da Manutenção

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório de Prática Profissional Supervisionada, Mestrado em Educação Pré-Escolar

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório de Estágio submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro – Especialização em Produção

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Session 7: Playing with Roles, images and improvising New States of Awareness, 3rd Global Conference, 1st November – 3rd November, 2014, Prague, Czech Republic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.