36 resultados para Training Technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess image quality using PGMI (perfect, good, moderate, inadequate) scale in digital mammography examinations acquired in DR systems. Identify the main failures and propose corrective actions. Evaluate the most typical breast density. Methods and Materials: Clinical image quality criteria were evaluated considering mammograms acquired in 13 DR systems and classified according to PGMI scale using the criteria described in European Commission guidelines for radiographers. The breast density was assessed according to ACR recommendations. The data were collected on the acquisition system monitor to reproduce the daily practice of the radiographer. Results: The image quality criteria were evaluated in 3044 images. The criteria were fully achieved in 41% of the images that were classified as P (perfect), 31 % of the images were classified as M (moderate), 20% G (good) and 9% I (inadequate). The main cause of inadequate image quality was absence of all breast tissue in the image, skin folders in the pectoral muscle and in the infra-mammary angle. The higher number of failures occurred in MLO projections (809 out of 1022). The most represented (36%) breast type was type 2 (25-50% glandular tissue). Conclusion: Incorrect radiographic technique was frequently detected suggesting potential training needs and poor communication between the team members (radiographer and radiologists). Further correlations are necessary to identify the main causes for the failures, namely specific education and training in digital mammography and workload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ciências da Educação, especialidade Supervisão em Educação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most challenging task underlying many hyperspectral imagery applications is the linear unmixing. The key to linear unmixing is to find the set of reference substances, also called endmembers, that are representative of a given scene. This paper presents the vertex component analysis (VCA) a new method to unmix linear mixtures of hyperspectral sources. The algorithm is unsupervised and exploits a simple geometric fact: endmembers are vertices of a simplex. The algorithm complexity, measured in floating points operations, is O (n), where n is the sample size. The effectiveness of the proposed scheme is illustrated using simulated data.