43 resultados para Statistical parameters
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
The discovery of X-rays was undoubtedly one of the greatest stimulus for improving the efficiency in the provision of healthcare services. The ability to view, non-invasively, inside the human body has greatly facilitated the work of professionals in diagnosis of diseases. The exclusive focus on image quality (IQ), without understanding how they are obtained, affect negatively the efficiency in diagnostic radiology. The equilibrium between the benefits and the risks are often forgotten. It is necessary to adopt optimization strategies to maximize the benefits (image quality) and minimize risk (dose to the patient) in radiological facilities. In radiology, the implementation of optimization strategies involves an understanding of images acquisition process. When a radiographer adopts a certain value of a parameter (tube potential [kVp], tube current-exposure time product [mAs] or additional filtration), it is essential to know its meaning and impact of their variation in dose and image quality. Without this, any optimization strategy will be a failure. Worldwide, data show that use of x-rays has been increasingly frequent. In Cabo Verde, we note an effort by healthcare institutions (e.g. Ministry of Health) in equipping radiological facilities and the recent installation of a telemedicine system requires purchase of new radiological equipment. In addition, the transition from screen-films to digital systems is characterized by a raise in patient exposure. Given that this transition is slower in less developed countries, as is the case of Cabo Verde, the need to adopt optimization strategies becomes increasingly necessary. This study was conducted as an attempt to answer that need. Although this work is about objective evaluation of image quality, and in medical practice the evaluation is usually subjective (visual evaluation of images by radiographer / radiologist), studies reported a correlation between these two types of evaluation (objective and subjective) [5-7] which accredits for conducting such studies. The purpose of this study is to evaluate the effect of exposure parameters (kVp and mAs) when using additional Cooper (Cu) filtration in dose and image quality in a Computed Radiography system.
Resumo:
Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Material and methods: Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical 99mTc-labeled tracers (250, 350, 450 and 680MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. Results: In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fraction (LVEF), end-systolic volume (ESV) it was only for 250MBq, and 350MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. Conclusion: The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450MBq, corresponding to the 5.4MBq of the myocardium, for standard patient types.
Resumo:
Purpose: To compare image quality and effective dose when the 10 kVp rule is applied with manual and AEC mode in PA chest X-ray. Methods and Materials: A total of 68 images (with and without lesions) were acquired of an anthropomorphic chest phantom in a Wolverson Arcoma X-ray unit. The images were evaluated against a reference image using image quality criteria and the 2 alternative forced choice (2 AFC) method by five radiographers. The effective dose was calculated using PCXMC software using the exposure parameters and DAP. The exposure index (lgM) was recorded. Results: Exposure time decreases considerably when applying the 10 kVp rule in manual mode (50%-28%) compared to AEC mode (36%-23%). Statistical differences for effective dose between several AEC modes were found (p=0.002). The effective dose is lower when using only the right AEC ionization chamber. Considering image quality, there are no statistical differences (p=0.348) between the different AEC modes for images with no lesions. Using a higher kVp value the lgM values will also increase. The lgM values showed significant statistical differences (p=0.000). The image quality scores did not present statistically significant differences (p=0.043) for the images with lesions when comparing manual with AEC modes. Conclusion: In general, the dose is lower in the manual mode. By using the right AEC ionising chamber the effective dose will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the detectability of the lesions.
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed, Google Scholar and ScienceDirect) and relevant websites (e.g., American College of Radiology and International Commission on Radiological Protection) to identify guidelines and recent studies focused on dose optimisation in paediatrics using digital technologies. Plain radiography was identified as the most accurate method. The American College of Radiology (ACR) and European Commission (EC) provided two guidelines that were identified as the most relevant to the subject. The ACR guidelines were updated in 2014; however these guidelines do not provide detailed guidance on technical exposure parameters. The EC guidelines are more complete but are dedicated to screen film systems. Other studies provided reviews on the several exposure parameters that should be included for optimisation, such as tube current, tube voltage and source-to-image distance; however, only explored few of these parameters and not all of them together. One publication explored all parameters together but this was for adults only. Due to lack of literature on exposure parameters for paediatrics, more research is required to guide and harmonise practice.
Resumo:
Purpose: To determine whether using different combinations of kVp and mAs with additional filtration can reduce the effective dose to a paediatric phantom whilst maintaining diagnostic image quality. Methods: 27 images of a paediatric AP pelvis phantom were acquired with different kVp, mAs and additional copper filtration. Images were displayed on quality controlled monitors with dimmed lighting. Ten diagnostic radiographers (5 students and 5 experienced radiographers) had eye tests to assess visual acuity before rating the images. Each image was rated for visual image quality against a reference image using 2 alternative forced choice software using a 5-point Likert scale. Physical measures (SNR and CNR) were also taken to assess image quality. Results: Of the 27 images rated, 13 of them were of acceptable image quality and had a dose lower than the image with standard acquisition parameters. Two were produced without filtration, 6 with 0.1mm and 5 with 0.2mm copper filtration. Statistical analysis found that the inter-rater and intra-rater reliability was high. Discussion: It is possible to obtain an image of acceptable image quality with a dose that is lower than published guidelines. There are some areas of the study that could be improved. These include using a wider range of kVp and mAs to give an exact set of parameters to use. Conclusion: Additional filtration has been identified as amajor tool for reducing effective dose whilst maintaining acceptable image quality in a 5 year old phantom.
Resumo:
This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors.
Resumo:
The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.
Resumo:
Brain dopamine transporters imaging by Single Photon Emission Tomography (SPECT) with 123I-FP-CIT has become an important tool in the diagnosis and evaluation of parkinsonian syndromes, since this radiopharmaceutical exhibits high affinity for membrane transporters responsible for cellular reabsorption of dopamine on the striatum. However, Ordered Subset Expectation Maximization (OSEM) is the method recommended in the literature for imaging reconstruction. Filtered Back Projection (FBP) is still used due to its fast processing, even if it presents some disadvantages. The aim of this work is to investigate the influence of reconstruction parameters for FBP in semiquantification of Brain Studies with 123I-FPCIT compared with those obtained with OSEM recommended reconstruction.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Introdução – A cintigrafia de perfusão do miocárdio (CPM) desempenha um importante papel no diagnóstico, avaliação e seguimento de pacientes com doença arterial coronária, sendo o seu processamento realizado maioritariamente de forma semiautomática. Uma vez que o desempenho dos técnicos de medicina nuclear (TMN) pode ser afetado por fatores individuais e ambientais, diferentes profissionais que processem os mesmos dados poderão obter diferentes estimativas dos parâmetros quantitativos (PQ). Objetivo – Avaliar a influência da experiência profissional e da função visual no processamento semiautomático da CPM. Analisar a variabilidade intra e interoperador na determinação dos PQ funcionais e de perfusão. Metodologia – Selecionou-se uma amostra de 20 TMN divididos em dois grupos, de acordo com a sua experiência no software Quantitative Gated SPECTTM: Grupo A (GA) – TMN ≥600h de experiência e Grupo B (GB) – TMN sem experiência. Submeteram-se os TMN a uma avaliação ortóptica e ao processamento de 21 CPM, cinco vezes, não consecutivas. Considerou-se uma visão alterada quando pelo menos um parâmetro da função visual se encontrava anormal. Para avaliar a repetibilidade e a reprodutibilidade recorreu-se à determinação dos coeficientes de variação, %. Na comparação dos PQ entre operadores, e para a análise do desempenho entre o GA e GB, aplicou-se o Teste de Friedman e de Wilcoxon, respetivamente, considerando o processamento das mesmas CPM. Para a comparação de TMN com visão normal e alterada na determinação dos PQ utilizou-se o Teste Mann-Whitney e para avaliar a influência da visão para cada PQ recorreu-se ao coeficiente de associação ETA. Diferenças estatisticamente significativas foram assumidas ao nível de significância de 5%. Resultados e Discussão – Verificou-se uma reduzida variabilidade intra (<6,59%) e inter (<5,07%) operador. O GB demonstrou ser o mais discrepante na determinação dos PQ, sendo a parede septal (PS) o único PQ que apresentou diferenças estatisticamente significativas (zw=-2,051, p=0,040), em detrimento do GA. No que se refere à influência da função visual foram detetadas diferenças estatisticamente significativas apenas na fração de ejeção do ventrículo esquerdo (FEVE) (U=11,5, p=0,012) entre TMN com visão normal e alterada, contribuindo a visão em 33,99% para a sua variação. Denotaram-se mais diferenças nos PQ obtidos em TMN que apresentam uma maior incidência de sintomatologia ocular e uma visão binocular diminuída. A FEVE demonstrou ser o parâmetro mais consistente entre operadores (1,86%). Conclusão – A CPM apresenta-se como uma técnica repetível e reprodutível, independente do operador. Verificou-se influência da experiência profissional e da função visual no processamento semiautomático da CPM, nos PQ PS e FEVE, respetivamente.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.