35 resultados para Standard Model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We start by presenting the current status of a complex flavour conserving two-Higgs doublet model. We will focus on some very interesting scenarios where unexpectedly the light Higgs couplings to leptons and to b-quarks can have a large pseudoscalar component with a vanishing scalar component. Predictions for the allowed parameter space at end of the next run with a total collected luminosity of 300 fb(-1) and 3000 fb(-1) are also discussed. These scenarios are not excluded by present data and most probably will survive the next LHC run. However, a measurement of the mixing angle phi(tau), between the scalar and pseudoscalar component of the 125 GeV Higgs, in the decay h -> tau(+)tau(-) will be able to probe many of these scenarios, even with low luminosity. Similarly, a measurement of phi(t) in the vertex (t) over bar th could help to constrain the low tan beta region in the Type I model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the discovery of the Higgs boson at the Large Hadron Collider the high energy physics community's attention has now turned to understanding the properties of the Higgs boson, together with the hope of finding more scalars during run 2. In this work we discuss scenarios where using a combination of three decays, involving the 125 GeV Higgs boson, the Z boson and at least one more scalar, an indisputable signal of CP-violation arises. We use a complex two-Higgs doublet model as a reference model and present some benchmark points that have passed all current experimental and theoretical constraints, and that have cross sections large enough to be probed during run 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.