52 resultados para Solids mixing
Resumo:
We suggest that the weak-basis independent condition det(M-nu) = 0 for the effective neutrino mass matrix can be used in order to remove the ambiguities in the reconstruction of the neutrino mass matrix from input data available from present and future feasible experiments. In this framework, we study the full reconstruction of M-nu with special emphasis on the correlation between the Majorana CP-violating phase and the various mixing angles. The impact of the recent KamLAND results on the effective neutrino mass parameter is also briefly discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the physical meaning of some of the "texture zeros" which appear in most of the Ansatze on quark masses and mixings. It is shown that starting from arbitrary quark mass matrices and making a suitable weak basis transformation one can obtain some of these sets of zeros which therefore have no physical content. We then analyse the physical implications of a four-texture zero Ansatz which is in agreement with all present experimental data. (C) 2000 Elsevier Science B.V. AU rights reserved.
Resumo:
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.
Resumo:
Proceedings of International Conference Conference Volume 7830 Image and Signal Processing for Remote Sensing XVI Lorenzo Bruzzone Toulouse, France | September 20, 2010
Resumo:
Proceedings of International Conference - SPIE 7477, Image and Signal Processing for Remote Sensing XV - 28 September 2009
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper presents a review of the literature published so far on the use of fine aggregates from construction demolition waste used as a partial or total replacement of fine natural aggregates in concrete production. The review presents the initial works on this subject and an overview of the existing regulations. It goes on to describe the production, treatment and properties of the fine recycled aggregates (FRA). The most suitable mixing techniques for concrete with this type of aggregates are then discussed. The properties of these concrete mixes are analysed in detail, after which a few examples of structures with this type of concrete are described and compared. The acquisition of fine natural aggregates and the dumping of the fine fraction of construction and demolition waste are two serious environmental problems that can be solved simultaneously by using FRA in concrete production, a subject that is lagging behind the use of the corresponding coarse fraction.
Resumo:
A fuzzy linguistic controller has been developed and implemented with the aim to cope with interactions between control loops due to coupling effects. To access the performance of the proposed approach several experiments have also been conducted using the classical PID controllers in the control loops. A mixing process has been used as test bed of all controllers experimented and the corresponding dynamic model has been derived. The successful results achieved with the fuzzy linguistic controllers suggests that they can be an alternative to classical controllers when in the presence of process plants where automatic control as to cope with coupling effects between control loops. © 2014 IEEE.
Resumo:
Functionally graded materials are a type of composite materials which are tailored to provide continuously varying properties, according to specific constituent's mixing distributions. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, because of this continuous properties variation characteristic, which enables among other advantages, smoother stresses distribution profiles. Therefore the growing trend on the use of these materials brings together the interest and the need for getting optimum configurations concerning to each specific application. In this work it is studied the use of particle swarm optimization technique for the maximization of a functionally graded sandwich beam bending stiffness. For this purpose, a set of case studies is analyzed, in order to enable to understand in a detailed way, how the different optimization parameters tuning can influence the whole process. It is also considered a re-initialization strategy, which is not a common approach in particle swarm optimization as far as it was possible to conclude from the published research works. As it will be shown, this strategy can provide good results and also present some advantages in some conditions. This work was developed and programmed on symbolic computation platform Maple 14. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.
Resumo:
In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
To study a flavour model with a non-minimal Higgs sector one must first define the symmetries of the fields; then identify what types of vacua exist and how they may break the symmetries; and finally determine whether the remnant symmetries are compatible with the experimental data. Here we address all these issues in the context of flavour models with any number of Higgs doublets. We stress the importance of analysing the Higgs vacuum expectation values that are pseudo-invariant under the generators of all subgroups. It is shown that the only way of obtaining a physical CKM mixing matrix and, simultaneously, non-degenerate and non-zero quark masses is requiring the vacuum expectation values of the Higgs fields to break completely the full flavour group, except possibly for some symmetry belonging to baryon number. The application of this technique to some illustrative examples, such as the flavour groups Delta (27), A(4) and S-3, is also presented.
Resumo:
A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.
Resumo:
We report on a simple method to obtain surface gratings using a Michelson interferometer and femtosecond laser radiation. In the optical setup used, two parallel laser beams are generated using a beam splitter and then focused using the same focusing lens. An interference pattern is created in the focal plane of the focusing lens, which can be used to pattern the surface of materials. The main advantage of this method is that the optical paths difference of the interfering beams is independent of the distance between the beams. As a result, the fringes period can be varied without a need for major realignment of the optical system and the time coincidence between the interfering beams can be easily monitored. The potential of the method was demonstrated by patterning surface gratings with different periods on titanium surfaces in air.
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Mecânica