62 resultados para Si microstrip and pad detectors
Resumo:
We report in this paper the recent advances we obtained in optimizing a color image sensor based on the laser-scanned-photodiode (LSP) technique. A novel device structure based on a a-SiC:H/a-Si:H pin/pin tandem structure has been tested for a proper color separation process that takes advantage on the different filtering properties due to the different light penetration depth at different wavelengths a-SM and a-SiC:H. While the green and the red images give, in comparison with previous tested structures, a weak response, this structure shows a very good recognition of blue color under reverse bias, leaving a good margin for future device optimization in order to achieve a complete and satisfactory RGB image mapping. Experimental results about the spectral collection efficiency are presented and discussed from the point of view of the color sensor applications. The physics behind the device functioning is explained by recurring to a numerical simulation of the internal electrical configuration of the device.
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
Amorphous glass/ZnO-Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1-xCx:H)/Al imagers with different n-layer resistivities were produced by plasma enhanced chemical vapour deposition technique (PE-CVD). An image is projected onto the sensing element and leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout, and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The influence of the intensity of the optical image projected onto the sensor surface is correlated with the sensor output characteristics (sensitivity, linearity blooming, resolution and signal-to-noise ratio) are analysed for different material compositions (0.5 < x < 1). The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity signal and on the spatial resolution are achieved at 0.2 mW cm(-2) light flux by decreasing the n-layer conductivity by the same amount. A physical model supported by electrical simulation gives insight into the image-sensing technique used.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a Double Color Laser Scanned Photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the color detection process are analyzed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Peripheral arterial disease (PAD) as a high incidence in general population and 12% to 20% of population with more than 60 years has already clinical symptoms, such as intermittent claudication (IC), pain, loss of strength and functional incapacity. There are already some studies that refer the possible positive effects of physical exercise in functional consequences of PAD. The purpose of this study was to verify the results of a home-based (HB) weekly supervised physical exercise program in patients with IC in consequence of PAD in lower limbs, and observe the medium number of diary steps walked by the subjects of our study.
Resumo:
Developments in digital detector technologies have been taking place and new digital technologies are available for clinical practice. This chapter is intended to give a technical state-of-the-art overview about computed radiography (CR) and digital radiography (DR) detectors. CR systems use storage-phosphor image plates with a separate image readout process and DR technology converts X-rays into electrical charges by means of a readout process using TFT arrays. Digital detectors offer several advantages when compared to analogue detectors. The knowledge about digital detector technology for use in plain radiograph examinations is thus a fundamental topic to be acquired by radiology professionals and students. In this chapter an overview of digital radiography systems (both CR and DR) currently available for clinical practice is provided.
Resumo:
Plain radiography still accounts for the vast majority of imaging studies that are performed at multiple clinical instances. Digital detectors are now prominent in many imaging facilities and they are the main driving force towards filmless environments. There has been a working paradigm shift due to the functional separation of acquisition, visualization, and storage with deep impact in the imaging workflows. Moreover with direct digital detectors images are made available almost immediately. Digital radiology is now completely integrated in Picture Archiving and Communication System (PACS) environments governed by the Digital Imaging and Communications in Medicine (DICOM) standard. In this chapter a brief overview of PACS architectures and components is presented together with a necessarily brief account of the DICOM standard. Special focus is given to the DICOM digital radiology objects and how specific attributes may now be used to improve and increase the metadata repository associated with image data. Regular scrutiny of the metadata repository may serve as a valuable tool for improved, cost-effective, and multidimensional quality control procedures.
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
This paper describes the design of a textile microstrip antenna for 2.4 GHz. Two different fabrics are used: one for the dielectric part and another one for the conductor part. The dielectric constant of the dielectric fabric is determined experimentally. The input matching is studied by electromagnetic simulation and experimentally. Since the antenna is meant to be incorporated in the user's clothe, the effect that the antenna bending has on the matching level is also investigated both theoretically and experimentally.
Resumo:
Optical colour sensors based on multilayered a-SiC:H heterostructures can act as voltage controlled optical filters in the visible range. In this article we investigate the application of these structures for Fluorescence Resonance Energy Transfer (FRET) detection, The characteristics of a-SiC:H multilayered structure are studied both theoretically and experimentally in several wavelengths corresponding to different fluorophores. The tunable optical p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures were produced by PECVD and tested for a proper fine tuning in the violet, cyan and yellow wavelengths. The devices were characterized through transmittance and spectral response measurements, under different electrical bias and frequencies. Violet, cyan and yellow signals were applied in simultaneous and results have shown that they can be recovered under suitable applied bias. A theoretical analysis supported by numerical simulation is presented.
Resumo:
The present work concerns a new synthesis approach to prepare niobium based SAPO materials with AEL structure and the characterization ofNb species incorporated within the inorganic matrixes. The SAPO-11 materials were synthesized with or without the help of a small amine, methylamine (MA) as co-template, while Nb was added directly during the preparation of the initial gel. Structural, textural and acidic properties of the different supports were evaluated by XRD, TPR, UV-Vis spectroscopy, pyridine adsorption followed by IR spectroscopy and thermal analyses. Pure and well crystalline Nb based SAPO-11 materials were obtained, either with or without MA, using in the initial gel a low Si content of about 0.6. Increasing the Si content of the gel up to 0.9 led to an important decrease of the samples crystallinity. Niobium was found to incorporate the AEL pores support as small Nb2O5 oxide particles and also as extra framework cationic species (Nb5+), compensating the negative charges from the matrix and generating new Lewis acid sites. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Dedicated Short Range Communications (DSRC) is the key enabling technology for the present and future vehicular communication for various applications, such as safety improvement and traffic jam mitigation. This paper describes the development of a microstrip antenna array for the roadside equipment of a DSRC system, whose characteristics are according with the vehicular communications standards. The proposed antenna, with circular polarization, has a wide bandwidth, enough to cover the current European DSRC 5.8 GHz band and the future 5.9 GHz band for next generation DSRC communications. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 2794-2796, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26394
Resumo:
Amorphous Si/SiC photodiodes working as photo-sensing or wavelength sensitive devices have been widely studied. In this paper single and stacked a-SiC:H p-i-n devices, in different geometries and configurations, are reviewed. Several readout techniques, depending on the desired applications (image sensor, color sensor, wavelength division multiplexer/demultiplexer device) are proposed. Physical models are presented and supported by electrical and numerical simulations of the output characteristics of the sensors.
Resumo:
This letter reports a near-ultraviolet/visible/near-infrared n(+)-n-i-delta(i)-p photodiode with an absorber comprising a nanocrystalline silicon n layer and a hydrogenated amorphous silicon i layer. Device modeling reveals that the dominant source of reverse dark current is deep defect states in the n layer, and its magnitude is controlled by the i layer thickness. The photodiode with the 900/400 nm thick n-i layers exhibits a reverse dark current density of 3nA/cm(2) at -1V. Donor concentration and diffusion length of holes in the n layer are estimated from the capacitance-voltage characteristics and from the bias dependence of long-wavelength response, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660725]