41 resultados para Realistic microstructure
Resumo:
Basaltic rocks are the main component of the oceanic upper crust, thus of potential interest for water and geothermal resources, storage of CO2 and volcanic edifice stability. In this work, we investigated experimentally the mechanical behavior and the failure modes of a porous basalt, with an initial connected porosity of 18%. Results were acquired under triaxial compression experiments at confining pressure in the range of 25-200 MPa on water saturated samples. In addition, a purely hydrostatic test was also performed to reach the pore collapse critical pressure P*. During hydrostatic loading, our results show that the permeability is highly pressure dependent, which suggests that the permeability is mainly controlled by pre-existing cracks. When the sample is deformed at pressure higher than the pore collapse pressure P*, some very small dilatancy develops due to microcracking, and an increase in permeability is observed. Under triaxial loading, two modes of deformation can be highlighted. At low confining pressure (Pc < 50 MPa), the samples are brittle and shear localization occurs. For confining pressure > 50 MPa, the stress-strain curves are characterized by strain hardening and volumetric compaction. Stress drops are also observed, suggesting that compaction may be localized. The presence of compaction bands is confirmed by our microstructure analysis. In addition, the mechanical data allows us to plot the full yield surface for this porous basalt, which follows an elliptic cap as previously observed in high porosity sandstones and limestones.
Resumo:
We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.
Resumo:
A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.
Resumo:
This paper provides a two-stage stochastic programming approach for the development of optimal offering strategies for wind power producers. Uncertainty is related to electricity market prices and wind power production. A hybrid intelligent approach, combining wavelet transform, particle swarm optimization and adaptive-network-based fuzzy inference system, is used in this paper to generate plausible scenarios. Also, risk aversion is explicitly modeled using the conditional value-at-risk methodology. Results from a realistic case study, based on a wind farm in Portugal, are provided and analyzed. Finally, conclusions are duly drawn.
Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste
Resumo:
This paper assesses the physical, chemical and mineralogical characteristics of fine recycled aggregates obtained from crushed concrete waste, comparing them with two types of natural fine aggregates from different origins. A commercial concrete was jaw crushed, and the effect of different aperture sizes on the particle size distribution of the resulting aggregates was evaluated. The density and water absorption of the recycled aggregates was determined and a model for predicting water absorption over time is proposed. Both natural and recycled aggregates were characterized regarding bulk density and fines content. Recycled aggregates were additionally characterized by XRD, SEM/EDS and DTA/TG of individual size fractions. The results show that natural and recycled fine aggregates have very different characteristics. This should be considered in potential applications, both in terms of the limits for replacing amounts and of the rules and design criteria of the manufactured products. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The Chaves basin is a pull-apart tectonic depression implanted on granites, schists, and graywackes, and filled with a sedimentary sequence of variable thickness. It is a rather complex structure, as it includes an intricate network of faults and hydrogeological systems. The topography of the basement of the Chaves basin still remains unclear, as no drill hole has ever intersected the bottom of the sediments, and resistivity surveys suffer from severe equivalence issues resulting from the geological setting. In this work, a joint inversion approach of 1D resistivity and gravity data designed for layered environments is used to combine the consistent spatial distribution of the gravity data with the depth sensitivity of the resistivity data. A comparison between the results from the inversion of each data set individually and the results from the joint inversion show that although the joint inversion has more difficulty adjusting to the observed data, it provides more realistic and geologically meaningful models than the ones calculated by the inversion of each data set individually. This work provides a contribution for a better understanding of the Chaves basin, while using the opportunity to study further both the advantages and difficulties comprising the application of the method of joint inversion of gravity and resistivity data.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica
Resumo:
The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete’s microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC’s microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC’s durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA. © 2015 RILEM.
Resumo:
Railway vehicle homologation, with respect to running dynamics, is addressed via dedicated norms. The results required, such as, accelerations and/or wheel-rail contact forces, obtained from experimental tests or simulations, must be available. Multibody dynamics allows the modelling of railway vehicles and their representation in real operations conditions, being the realism of the multibody models greatly influenced by the modelling assumptions. In this paper, two alternative multibody models of the Light Rail Vehicle 2000 (LRV) are constructed and simulated in a realistic railway track scenarios. The vehicle-track interaction compatibility analysis consists of two stages: the use of the simplified method described in the norm "UIC 518-Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behaviour-Safety-Track Fatigue-Running Behaviour" for decision making; and, visualization inspection of the vehicle motion with respect to the track via dedicated tools for understanding the mechanisms involved.
Resumo:
Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.