39 resultados para Parameters correlation
Resumo:
This paper focuses on a novel formalization for assessing the five parameter modeling of a photovoltaic cell. An optimization procedure is used as a feasibility problem to find the parameters tuned at the open circuit, maximum power, and short circuit points in order to assess the data needed for plotting the I-V curve. A comparison with experimental results is presented for two monocrystalline PV modules.
Resumo:
The article reports density measurements of dipropyl (DPA), dibutyl (DBA) and bis(2-ethylhexyl) (DEHA) adipates, using a vibrating U-tube densimeter, model DMA HP, from Anton Paar GmbH. The measurements were performed in the temperature range (293 to 373) K and at pressures up to about 68 MPa, except for DPA for which the upper limits were 363 K and 65 MPa, respectively. The density data for each liquid was correlated with the temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as 0.2% at a 95% confidence level. No literature density data at pressures higher than 0.1 MPa could be found. DEHA literature data at atmospheric pressure agree with the correlation of the present measurements, in the corresponding temperature range, within +/- 0.11%. The isothermal compressibility and the isobaric thermal expansion were calculated by differentiation of the modified Tait correlation equation. These two parameters were also calculated for dimethyl adipate (DMA), from density data reported in a previous work. The uncertainties of isothermal compressibility and the isobaric thermal expansion are estimated to be less than +/- 1.7% and +/- 1.1%, respectively, at a 95% confidence level. Literature data of isothermal compressibility and isobaric thermal expansivity for DMA have an agreement within +/- 1% and +/- 2.4%, respectively, with results calculated in this work. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This review aims to identify strategies to optimise radiography practice using digital technologies, for full spine studies on paediatrics focusing particularly on methods used to diagnose and measure severity of spinal curvatures. The literature search was performed on different databases (PubMed, Google Scholar and ScienceDirect) and relevant websites (e.g., American College of Radiology and International Commission on Radiological Protection) to identify guidelines and recent studies focused on dose optimisation in paediatrics using digital technologies. Plain radiography was identified as the most accurate method. The American College of Radiology (ACR) and European Commission (EC) provided two guidelines that were identified as the most relevant to the subject. The ACR guidelines were updated in 2014; however these guidelines do not provide detailed guidance on technical exposure parameters. The EC guidelines are more complete but are dedicated to screen film systems. Other studies provided reviews on the several exposure parameters that should be included for optimisation, such as tube current, tube voltage and source-to-image distance; however, only explored few of these parameters and not all of them together. One publication explored all parameters together but this was for adults only. Due to lack of literature on exposure parameters for paediatrics, more research is required to guide and harmonise practice.
Resumo:
The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.
Resumo:
Brain dopamine transporters imaging by Single Photon Emission Tomography (SPECT) with 123I-FP-CIT has become an important tool in the diagnosis and evaluation of parkinsonian syndromes, since this radiopharmaceutical exhibits high affinity for membrane transporters responsible for cellular reabsorption of dopamine on the striatum. However, Ordered Subset Expectation Maximization (OSEM) is the method recommended in the literature for imaging reconstruction. Filtered Back Projection (FBP) is still used due to its fast processing, even if it presents some disadvantages. The aim of this work is to investigate the influence of reconstruction parameters for FBP in semiquantification of Brain Studies with 123I-FPCIT compared with those obtained with OSEM recommended reconstruction.
Resumo:
The solubilities of two C-tetraalkylcalix[4]resorcinarenes, namely C-tetramethylcalix[4]resorcinarene and C-tetrapentylcalix[4]resorcinarene, in supercritical carbon dioxide (SCCO2) were measured in a flow-type apparatus at a temperature range from (313.2 to 333.2) K and at pressures from (12.0 to 35.0) MPa. The C-tetraalkylcalix[4]resorcinarenes were synthesized applying our optimized procedure and fully characterized by means of gel permeation chromatography, infrared and nuclear magnetic resonance spectroscopy. The solubilities of the C-tetraalkylcalix[4]resorcinarenes in SCCO2 were determined by analysis of the extracts obtained by HPLC with ultraviolet (UV) detection methodology adapted by our team. Four semiempirical density-based models, and the SoaveRedlichKwong cubic equation of state (SRK CEoS) with classical mixing rules, were applied to correlate the solubility of the calix[4]resorcinarenes in the SC CO2. The physical properties required for the modeling were estimated and reported.
Resumo:
Previous work by our group introduced a novel concept and sensor design for “off-the-person” ECG, for which evidence on how it compares against standard clinical-grade equipment has been largely missing. Our objectives with this work are to characterise the off-the-person approach in light of the current ECG systems landscape, and assess how the signals acquired using this simplified setup compare with clinical-grade recordings. Empirical tests have been performed with real-world data collected from a population of 38 control subjects, to analyze the correlation between both approaches. Results show off-the-person data to be correlated with clinical-grade data, demonstrating the viability of this approach to potentially extend preventive medicine practices by enabling the integration of ECG monitoring into multiple dimensions of people’s everyday lives. © 2015, IUPESM and Springer-Verlag Berlin Heidelberg.
Resumo:
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.