84 resultados para Noisy 3D data
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
A detailed analytic and numerical study of baryogenesis through leptogenesis is performed in the framework of the standard model of electroweak interactions extended by the addition of three right-handed neutrinos, leading to the seesaw mechanism. We analyze the connection between GUT-motivated relations for the quark and lepton mass matrices and the possibility of obtaining a viable leptogenesis scenario. In particular, we analyze whether the constraints imposed by SO(10) GUTs can be compatible with all the available solar, atmospheric and reactor neutrino data and, simultaneously, be capable of producing the required baryon asymmetry via the leptogenesis mechanism. It is found that the Just-So(2) and SMA solar solutions lead to a viable leptogenesis even for the simplest SO(10) GUT, while the LMA, LOW and VO solar solutions would require a different hierarchy for the Dirac neutrino masses in order to generate the observed baryon asymmetry. Some implications on CP violation at low energies and on neutrinoless double beta decay are also considered. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.
Resumo:
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Resumo:
Introdução – A análise da forma ou morfometria de estruturas anatómicas, como o trato vocal, pode ser efetuada a partir de imagens bidimensionais (2D) como de aquisições volumétricas (3D) de ressonância magnética (RM). Esta técnica de imagem tem vindo a ter uma utilização crescente no estudo da produção da fala. Objetivos – Demonstrar como pode ser efetuada a morfometria do trato vocal a partir da imagem por ressonância magnética e ainda apresentar padrões anatómicos normais durante a produção das vogais [i a u] e dois padrões articulatórios patológicos em contexto simulado. Métodos – As imagens consideradas foram recolhidas a partir de aquisições 2D (Turbo Spin-eco) e 3D (Flash Gradiente-Eco) de RM em quatro sujeitos durante a produção das vogais em estudo; adicionalmente procedeu-se à avaliação de duas perturbações articulatórias usando o mesmo protocolo de RM. A morfometria do trato vocal foi extraída com recurso a técnicas manuais (para extração de cinco medidas articulatórias) e automáticas (para determinação de volumes) de processamento e análise de imagem. Resultados – Foi possível analisar todo o trato vocal, incluindo a posição e a forma dos articuladores, tendo por base cinco medidas descritivas do posicionamento destes órgãos durante a produção das vogais. A determinação destas medições permitiu identificar quais as estratégias mais comummente adotadas na produção de cada som, nomeadamente a postura articulatória e a variação de cada medida para cada um dos sujeitos em estudo. No contexto de voz falada intersujeitos, foi notória a variabilidade nos volumes estimados do trato vocal para cada som e, em especial, o aumento do volume do trato vocal na perturbação articulatória de sigmatismo. Conclusão – A imagem por RM é, sem dúvida, uma técnica promissora no estudo da fala, inócua, não-invasiva e que fornece informação fiável da morfometria do trato vocal.
Resumo:
Introdução – O presente estudo avaliou o efeito da cafeína no valor da razão contraste ruído (CNR) em imagens SWI. Objetivos – Avaliar o efeito da cafeína qualitativamente e quantificado pelo cálculo do valor CNR em imagens de magnitude e MIP para as estruturas: veia cerebral interna, seio sagital superior, tórcula e artéria cerebral média. Metodologia – A população do estudo incluiu 24 voluntários saudáveis que estiveram pelo menos 24h privados da ingestão de cafeína. Adquiriram-se imagens SWI antes e após a ingestão de 100ml de café. Os voluntários foram subdivididos em quatro grupos de seis indivíduos/grupo e avaliados separadamente após decorrido um intervalo de tempo diferente para cada grupo (15, 25, 30 ou 45min pós-cafeína). Utilizou-se um scanner Siemens Avanto 1,5 T com bobine standard de crânio e os parâmetros: T2* GRE 3D de alta resolução no plano axial, TR=49; TE=40; FA=15; FOV=187x230; matriz=221x320. O processamento de imagem foi efetuado no software OsiriX® e a análise estatística no GraphPadPrism®. Resultados e Discussão – As alterações de sinal e diferenças de contraste predominaram nas estruturas venosas e não foram significantes na substância branca, LCR e artéria cerebral média. Os valores CNR pré-cafeína diferiram significativamente do pós-cafeína nas imagens de magnitude e MIP na veia cerebral interna e nas imagens de magnitude do seio sagital superior e da tórcula (p<0,0001). Não se verificaram diferenças significativas entre os grupos avaliados nos diferentes tempos pós-cafeína. Conclusões – Especulamos que a cafeína possa vir a ser usada como agente de contraste nas imagens SWI barato, eficaz e de fácil administração.
Resumo:
The hand is one of the most important instruments of the human body, mainly due to the possibility of grip movements. Grip strength has been described as an important predictor of functional capacity. There are several factors that may influence it, such as gender, age and anthropometric characteristics. Functional capacity refers to the ability to perform daily activities which allow the individual to self-care and to live with autonomy. Composite Physical Function (CPF) scale is an evaluation tool for functional capacity that includes daily activities, self-care, sports activities, upper limb function and gait capacity. In 2011, Portugal had 15% of young population (0-14years) and 19% of elderly population (over 65 years). Considering the double-ageing phenomen, it is important to understand the effect of the grip strength in elderly individuals, considering their characteristics, as the need to maintainin dependency as long as possible.
Resumo:
A estimativa da idade gestacional (IG) em restos cadavéricos fetais é importante em contextos forenses. Para esse efeito, os especialistas forenses recorrem à avaliação do padrão de calcificação dentária e/ou ao estudo do esqueleto. Neste último, o comprimento das diáfises de ossos longos é um dos métodos mais utilizados, sendo utilizadas equações de regressão de obras pouco atuais ou baseadas em dados ecográficos, cujas medições diferem das efetuadas diretamente no osso. Este trabalho tem como objetivo principal a obtenção de equações de regressão para a população Portuguesa, com base na medição das diáfises de fémur, tíbia e úmero, utilizando radiografias postmortem. A amostra é constituída por 80 fetos de IG conhecida. Tratando-se de um estudo retrospectivo, os casos foram selecionados com base nas informações clínicas e anatomopatológicas, excluindo-se aqueles cujo normal crescimento se encontrava efetiva ou potencialmente comprometido. Os resultados confirmaram uma forte correlação entre o comprimento das diáfises estudadas e a IG, apresentando o fémur a correlação mais forte (r=0.967; p <0,01). Assim, foi possível obter uma equação de regressão para cada um dos ossos estudados. Concluindo, os objetivos do estudo foram atingidos com a obtenção das equações de regressão para os ossos estudados. Pretende-se, futuramente, alargar a amostra para validar e consolidar os resultados obtidos neste estudo.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
Radiotherapy is one of the therapeutics selected for localized prostate cancer, in cases where the tumour is confined to the prostate, penetrates the prostatic capsule or has reached the seminal vesicles (T1 to T3 stages). The radiation therapy can be administered through various modalities, being historically used the 3D conformal radiotherapy (3DCRT). Other modality of radiation administration is the intensity modulated radiotherapy (IMRT), that allows an increase of the total dose through modulation of the treatment beams, enabling a reduction in toxicity. One way to administer IMRT is through helical tomotherapy (TH). With this study we intent to analyze the advantages of helical tomotherapy when compared with 3DCRT, by evaluating the doses in the organs at risk (OAR) and planning target volumes (PTV).
Resumo:
Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.
Resumo:
Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.