129 resultados para Electrical engineers
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.
Resumo:
Micro-generation is the small scale production of heat and/or electricity from a low carbon source and can be a powerful driver for carbon reduction, behavior change, security of supply and economic value. The energy conversion technologies can include photovoltaic panels, micro combined heat and power, micro wind, heat pumps, solar thermal systems, fuel cells and micro hydro schemes. In this paper, a small research of the availability of the conversion apparatus and the prices for the micro wind turbines and photovoltaic systems is made and a comparison between these two technologies is performed in terms of the availability of the resource and costs. An analysis of the new legal framework published in Portugal is done to realize if the incentives to individualspsila investment in sustainable and local energy production is worth for their point of view. An economic evaluation for these alternatives, accounting with the governmentpsilas incentives should lead, in most cases, into attractive return rates for the investment. Apart from the attractiveness of the investment there are though other aspects that should be taken into account and those are the benefits that these choices have to us all. The idea is that micro-generation will not only make a significant direct contribution to carbon reduction targets, it will also trigger a multiplier effect in behavior change by engaging hearts and minds, and providing more efficient use of energy by householders. The diversified profile of power generation by micro-generators, both in terms of location and timing, should reduce the impact of intermittency or plant failures with significant gains for security of supply.
Resumo:
As it is well known, competitive electricity markets require new computing tools for generation companies to enhance the management of its resources. The economic value of the water stored in a power system reservoir is crucial information for enhancing the management of the reservoirs. This paper proposes a practical deterministic approach for computing the short-term economic value of the water stored in a power system reservoir, emphasizing the need to considerer water stored as a scarce resource with a short-term economic value. The paper addresses a problem concerning reservoirs with small storage capacities, i.e., the reservoirs considered as head-sensitivity. More precisely, the respective hydro plant is head-dependent and a pure linear approach is unable to capture such consideration. The paper presents a case study supported by the proposed practical deterministic approach and applied on a real multi-reservoir power system with three cascaded reservoirs, considering as input data forecasts for the electric energy price and for the natural inflow into the reservoirs over the schedule time horizon. The paper presents various water schedules due to different final stored water volume conditions on the reservoirs. Also, it presents the respective economic value of the water for the reservoirs at different stored water volume conditions.
Resumo:
The growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.
Resumo:
This paper presents the design methodology for the creation of corrugated horn antennas for the CosmoGal satellite. The mission will collect the radiation of the cosmic microwave background, by a radiometer in three different radio astronomy frequency bands (10.6-10.7GHz; 15.35-15.4GHz; 23.6-24GHz). It is discussed the design of several types of horns, simulated with the CST software. The best result points to a choked Gaussian corrugated horn antenna, with directivity of 23 dBi, side lobes 35 dB below and cross polarization better than -45 dB. Plus, with the advantage of having a small dimension, with a total length of only 7.43λ © 2014 IEEE.
Resumo:
Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.
Resumo:
The potential of the electrocardiographic (ECG) signal as a biometric trait has been ascertained in the literature over the past decade. The inherent characteristics of the ECG make it an interesting biometric modality, given its universality, intrinsic aliveness detection, continuous availability, and inbuilt hidden nature. These properties enable the development of novel applications, where non-intrusive and continuous authentication are critical factors. Examples include, among others, electronic trading platforms, the gaming industry, and the auto industry, in particular for car sharing programs and fleet management solutions. However, there are still some challenges to overcome in order to make the ECG a widely accepted biometric. In particular, the questions of uniqueness (inter-subject variability) and permanence over time (intra-subject variability) are still largely unanswered. In this paper we focus on the uniqueness question, presenting a preliminary study of our biometric recognition system, testing it on a database encompassing 618 subjects. We also performed tests with subsets of this population. The results reinforce that the ECG is a viable trait for biometrics, having obtained an Equal Error Rate of 9.01% and an Error of Identification of 15.64% for the entire test population.
Resumo:
This paper presents a single precision floating point arithmetic unit with support for multiplication, addition, fused multiply-add, reciprocal, square-root and inverse squareroot with high-performance and low resource usage. The design uses a piecewise 2nd order polynomial approximation to implement reciprocal, square-root and inverse square-root. The unit can be configured with any number of operations and is capable to calculate any function with a throughput of one operation per cycle. The floatingpoint multiplier of the unit is also used to implement the polynomial approximation and the fused multiply-add operation. We have compared our implementation with other state-of-the-art proposals, including the Xilinx Core-Gen operators, and conclude that the approach has a high relative performance/area efficiency. © 2014 Technical University of Munich (TUM).
Resumo:
In this work a mixed integer optimization linear programming (MILP) model was applied to mixed line rate (MLR) IP over WDM and IP over OTN over WDM (with and without OTN grooming) networks, with aim to reduce network energy consumption. Energy-aware and energy-aware & short-path routing techniques were used. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Energy aware routing optimization model on IPoWDM network, showed the lowest energy consumption along all years, and once compared with energy-aware & short-path routing, has led to an overall reduction in energy consumption up to 29%, expecting to save even more than shortest-path routing. © 2014 IEEE.
Resumo:
We propose a low complexity technique to generate amplitude correlated time-series with Nakagami-m distribution and phase correlated Gaussian-distributed time-series, which is useful for the simulation of ionospheric scintillation effects in GNSS signals. To generate a complex scintillation process, the technique requires solely the knowledge of parameters Sa (scintillation index) and σφ (phase standard deviation) besides the definition of models for the amplitude and phase power spectra. The concatenation of two nonlinear memoryless transformations is used to produce a Nakagami-distributed amplitude signal from a Gaussian autoregressive process.
Resumo:
As high dynamic range video is gaining popularity, video coding solutions able to efficiently provide both low and high dynamic range video, notably with a single bitstream, are increasingly important. While simulcasting can provide both dynamic range videos at the cost of some compression efficiency penalty, bit-depth scalable video coding can provide a better trade-off between compression efficiency, adaptation flexibility and computational complexity. Considering the widespread use of H.264/AVC video, this paper proposes a H.264/AVC backward compatible bit-depth scalable video coding solution offering a low dynamic range base layer and two high dynamic range enhancement layers with different qualities, at low complexity. Experimental results show that the proposed solution has an acceptable rate-distortion performance penalty regarding the HDR H.264/AVC single-layer coding solution.
Resumo:
This paper presents the recent research results about the development of a Observed Time Difference (OTD) based geolocation algorithm based on network trace data, for a real Universal Mobile Telecommunication System (UMTS) Network. The initial results have been published in [1], the current paper focus on increasing the sample convergence rate, and introducing a new filtering approach based on a moving average spatial filter, to increase accuracy. Field tests have been carried out for two radio environments (urban and suburban) in the Lisbon area, Portugal. The new enhancements produced a geopositioning success rate of 47% and 31%, and a median accuracy of 151 m and 337 m, for the urban and suburban environments, respectively. The implemented filter produced a 16% and 20% increase on accuracy, when compared with the geopositioned raw data. The obtained results are rather promising in accuracy and geolocation success rate. OTD positioning smoothed by moving average spatial filtering reveals a strong approach for positioning trace extracted events, vital for boosting Self-Organizing Networks (SON) over a 3G network.
Resumo:
Due to the application of active components into antennas these became a source of distortion on wireless communication systems. In this paper we explore the nonlinear effects occurring in a frequency reconfigurable antenna operating with a PIN Diode. We describe the measurement setup used to check the antenna intermodulation products and the measured compression and third order intermodulation limitations of a frequency reconfigurable antenna, operating at the UMTS and WLAN frequencies.
Resumo:
Although the computational power of mobile devices has been increasing, it is still not enough for some classes of applications. In the present, these applications delegate the computing power burden on servers located on the Internet. This model assumes an always-on Internet connectivity and implies a non-negligible latency. The thesis addresses the challenges and contributions posed to the application of a mobile collaborative computing environment concept to wireless networks. The goal is to define a reference architecture for high performance mobile applications. Current work is focused on efficient data dissemination on a highly transitive environment, suitable to many mobile applications and also to the reputation and incentive system available on this mobile collaborative computing environment. For this we are improving our already published reputation/incentive algorithm with knowledge from the usage pattern from the eduroam wireless network in the Lisbon area.