31 resultados para Efficient dominating set
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (2)
- Aston University Research Archive (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (50)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (13)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (7)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (41)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (148)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CUNY Academic Works (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons at Florida International University (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (108)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico do Porto, Portugal (67)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (7)
- Martin Luther Universitat Halle Wittenberg, Germany (6)
- Massachusetts Institute of Technology (9)
- Ministerio de Cultura, Spain (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (31)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (38)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (43)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (28)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (13)
- Université de Lausanne, Switzerland (147)
- Université de Montréal, Canada (46)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (54)
- University of Southampton, United Kingdom (14)
- WestminsterResearch - UK (1)
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.