36 resultados para COMPRESSIVE STRENGTH
Resumo:
The hand is one of the most important instruments of the human body, mainly due to the possibility of grip movements. Grip strength has been described as an important predictor of functional capacity. There are several factors that may influence it, such as gender, age and anthropometric characteristics. Functional capacity refers to the ability to perform daily activities which allow the individual to self-care and to live with autonomy. Composite Physical Function (CPF) scale is an evaluation tool for functional capacity that includes daily activities, self-care, sports activities, upper limb function and gait capacity. In 2011, Portugal had 15% of young population (0-14years) and 19% of elderly population (over 65 years). Considering the double-ageing phenomen, it is important to understand the effect of the grip strength in elderly individuals, considering their characteristics, as the need to maintainin dependency as long as possible.
Resumo:
Analisar: níveis de fadiga, força de preensão, HRQoL, níveis de actividade física. Será que se alteram em doentes PAF após o transplante de fígado? Dado que os níveis de actividade física se encontram abaixo dos valores mínimos recomendados deveria ser encontrada uma estratégia de aumento do tempo dispendido na actividade física leve a moderada idealmente no PRÉ TRANSPLANTE.
Resumo:
The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.
Resumo:
This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.
Resumo:
Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
Resumo:
The application of compressive sensing (CS) to hyperspectral images is an active area of research over the past few years, both in terms of the hardware and the signal processing algorithms. However, CS algorithms can be computationally very expensive due to the extremely large volumes of data collected by imaging spectrometers, a fact that compromises their use in applications under real-time constraints. This paper proposes four efficient implementations of hyperspectral coded aperture (HYCA) for CS, two of them termed P-HYCA and P-HYCA-FAST and two additional implementations for its constrained version (CHYCA), termed P-CHYCA and P-CHYCA-FAST on commodity graphics processing units (GPUs). HYCA algorithm exploits the high correlation existing among the spectral bands of the hyperspectral data sets and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. The proposed P-HYCA and P-CHYCA implementations have been developed using the compute unified device architecture (CUDA) and the cuFFT library. Moreover, this library has been replaced by a fast iterative method in the P-HYCA-FAST and P-CHYCA-FAST implementations that leads to very significant speedup factors in order to achieve real-time requirements. The proposed algorithms are evaluated not only in terms of reconstruction error for different compressions ratios but also in terms of computational performance using two different GPU architectures by NVIDIA: 1) GeForce GTX 590; and 2) GeForce GTX TITAN. Experiments are conducted using both simulated and real data revealing considerable acceleration factors and obtaining good results in the task of compressing remotely sensed hyperspectral data sets.