34 resultados para CEMENT PASTE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete’s microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC’s microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC’s durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA. © 2015 RILEM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydraulic binders play a vital role in the economic and social development because they are essential components of concrete, the most widely used construction material. Nowadays, Portland cement is the most predominantly used hydraulic binder due to its properties and widespread availability. Cement manufacture consumes large amount of non-renewable raw materials and energy, and it is a carbon-intensive process. Many efforts are, therefore, being undertaken towards the developing “greener” hydraulic binders. Concomitantly, binders must also correspond to market demand in terms of performance and aesthetic as well as fulfill mandatory regulations. In order to pursue these goals, different approaches have been followed including the improvement of the cement manufacturing process, production of blended cements, and testing innovative hydraulic binders with a different chemistry. This chapter presents a brief history of hydraulic binder’s discovery and use as well as the environmental and economic context of cement industry. It, then, describes the chemistry and properties of currently most used hydraulic binders—common cements and hydraulic limes—and that of the more promising binders for future applications, namely special Portland cements, aluminous cements, calcium sulfoaluminate cements, and alkali-activated cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil Estruturas