43 resultados para Binary Coded Decimal
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
Discrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this paper is the design of an optoelectronic circuit based on a-SiC technology, able to act simultaneously as a 4-bit binary encoder or a binary decoder in a 4-to-16 line configurations and show multiplexer-based logical functions. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n multilayered structure produced by PECVD. To analyze it under information-modulated wave (color channels) and uniform irradiation (background) four monochromatic pulsed lights (input channels): red, green, blue and violet shine on the device. Steady state optical bias was superimposed separately from the front and the back sides, and the generated photocurrent was measured. Results show that the devices, under appropriate optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development providing the possibility for selective removal of useless wavelengths. The logic functions needed to construct any other complex logic functions are the NOT, and both or either an AND or an OR. Any other complex logic function that might be found can also be used as building blocks to achieve the functions needed for the retrieval of channels within the WDM communication link. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Solvatochromic UV-Vis shifts of four indicators (4-nitroaniline, 4-nitroanisole, 4-nitrophenol and N,N-dimethy-1-4-nitro aniline) have been measured at 298.15 K in the ternary mixture methano1/1-propanol/acetonitrile (MeOH/1-PrOH/MeCN) in a total of 22 mole fractions, along with 18 additional mole fractions for each of the corresponding binary mixtures, MeOH/1-PrOH, 1-PrOH/MeCN and MeOH/MeCN. These values, combined with our previous experimental results for 2,6-dipheny1-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (Reichardt's betaine dye) in the same mixtures, permitted the computation of the Kamlet-Taft solvent parameters, alpha, beta, and pi*. The rationalization of the spectroscopic behavior of each probe within each mixture's whole mole fraction range was achieved through the use of the Bosch and Roses preferential solvation model. The applied model allowed the identification of synergistic behaviors in MeCN/alcohol mixtures and thus to infer the existence of solvent complexes in solution. Also, the addition of small amounts of MeCN to the binary mixtures was seen to cause a significant variation in pi*, whereas the addition of alcohol to MeCN mixtures always lead to a sudden change in a and The behavior of these parameters in the ternary mixture was shown to be mainly determined by the contributions of the underlying binary mixtures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Stair nesting allows us to work with fewer observations than the most usual form of nesting, the balanced nesting. In the case of stair nesting the amount of information for the different factors is more evenly distributed. This new design leads to greater economy, because we can work with fewer observations. In this work we present the algebraic structure of the cross of balanced nested and stair nested designs, using binary operations on commutative Jordan algebras. This new cross requires fewer observations than the usual cross balanced nested designs and it is easy to carry out inference.
Resumo:
In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.
Resumo:
Refractive indices, n(D), and densities, rho, at 298.15 K were measured for the ternary mixture methanol (MeOH)/propan-1-ol (1-PrOH)/acetonitrile (MeCN) for a total of 22 mole fractions, along with 18 mole fractions of each of the corresponding binary mixtures, methanol/propan-1-ol, propan-1-ol/acetonitrile and methanol/acetonitrile. The variation of excess refractive indices and excess molar volumes with composition was modeled by the Redlich-Kister polynomial function in the case of binary mixtures and by the Cibulka equation for the ternary mixture. A thermodynamic approach to excess refractive indices, recently proposed by other authors, was applied for the first time to ternary liquid mixtures. Structural effects were identified and interpreted both in the binary and ternary systems. A complex relationship between excess refractive indices and excess molar volumes was identified, revealing all four possible sign combinations between these two properties. Structuring of the mixtures was also discussed on the basis of partial molar volumes of the binary and ternary mixtures.
Resumo:
This paper presents the results of a study on the behaviour of self-compacting concrete (SCC) in the fresh and hardened states, produced with binary and ternary mixes of fly ash (FA) and limestone filler (LF), using the method proposed by Nepomuceno. His method determines the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) easily and efficiently, whilst guaranteeing the SCC properties in both the fresh and hardened states. For this, 11 SCMs were studied: one with cement (C) only; three with FA at 30%, 60% and 70% C substitution; three with LF at 30%, 60% and 70% C substitution; four with FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% C substitution. Once the composition of these mortars was defined, 18 SCC mixes were produced: 14 binary SCC mixes were produced with the seven binary mortar mixes, and four ternary SCC mixes were produced with the four ternary mortar mixes. In addition to the methodology proposed by Nepomuceno, the combined use of FA and LF in ternary mixtures was tested. The results confirmed that the method could yield SCC with adequate properties in both the fresh and hardened states. It was also possible to determine the SCC composition parameters in the mortar phase (self-compacting mortar - SCM) that will guarantee the SCC properties in both the fresh and hardened states, as confirmed through the optimized behaviour of the SCC in the fresh state and the promising results in the hardened state (compressive strength). The potential demonstrated by the joint use of LF and FA through the synergetic interaction of both additions is emphasized.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica
Resumo:
We define families of aperiodic words associated to Lorenz knots that arise naturally as syllable permutations of symbolic words corresponding to torus knots. An algorithm to construct symbolic words of satellite Lorenz knots is defined. We prove, subject to the validity of a previous conjecture, that Lorenz knots coded by some of these families of words are hyperbolic, by showing that they are neither satellites nor torus knots and making use of Thurston's theorem. Infinite families of hyperbolic Lorenz knots are generated in this way, to our knowledge, for the first time. The techniques used can be generalized to study other families of Lorenz knots.
Resumo:
This paper shows several ways to analyse the performance of a safety barrier, depending on the objective to be achieved and present a method to analyse binary components usually present on sensor systems of safety barriers. An application example of a water-based fire system is presented and the Probability of Failure on Demand (PFD) of the sensor system is determined based on the analysis of pressure switches installed in this safety barrier. The knowledge of such information will allow the determination of safety barrier’s availability.
Resumo:
Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
Resumo:
Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.