49 resultados para Air-flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM10 concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that lichens reacted physiologically in the polluted industrial area as evidenced by increased conductivity correlated to contamination level. The integration of temporal PM10 measurements and analysis of wind direction corroborated the importance of this industrialized region for air quality measurements and identified the relevance of traffic for the urban area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The handling of waste can be responsible for occupational exposure to particles and fungi. The aim of this study was to characterize exposure to particles and fungi in a composting plant. Measurements of particulate matter were performed using portable direct-reading equipment. Air samples of 50L were collected through an impaction method with a flow rate of 140L/min onto malt extract agar supplemented with chloramphenicol (0.05%). Surfaces samples were also collected. All the samples were incubated at 27ºC for 5 to 7 days. Particulate matter data showed higher contamination for PM, and PM10 sizes. Aspergillus genus presents the highest air prevalence (90.6%). Aspergillus niger (32.6%), A. fumigatus (26.5%) and A. flavus (16.3%) were the most prevalent fungi in air sampling, and Mucor sp. (39.2%), Aspergillus niger (30.9%) and A. fumigatus (28.7%) were the most found in surfaces. the results obtained claim the attention to the need of further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several activities are ensured by dockers increase occupational exposure to several risk factors. being one of them the fungal burden from the load. In this study we aim at characterizing fungal contamination in one warehouse that storage sugar cane from a ship, and also in one crane cabinet that unload the same sugar cane from the ship. Air samples were collected from the warehouse and from inside the crane cabinet. An outdoor sample was also collected, from each sampling site, and regarding as reference. Sampling volume was selected depending in the contamination expected and the air samples were collect through an impaction method in a flow rate of 140 L/min onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%), using the Millipore air Tester (Millipore). Surfaces samples from the warehouse were collected by swabbing the surfaces of the same indoor sites, using a 10 by 10cm square stencil according to the International Standard ISO 18593 (2004). The obtained swabs were then plated onto MEA. All the collected samples were incubated at 27ºC for 5 to 7 days. After laboratory processing and incubation of the collected samples, quantitative (colony-forming units - CFU/m3 and CFU/m2) and qualitative results were obtained with identification of the isolated fungal species. Aspergillus fumigatus present the highest fungal load and WHO guideline was overcome in both indoor sampling sites. The results obtained in this study highlight the need to know better the exposure burden from dockers, and specifically to fungi contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In basaltic dykes the magnetic lineation K1 (maximum magnetic susceptibility axis) is generally taken to indicate the flow direction during solidification of the magma. This assumption was tested in Tertiary basaltic dykes from Greenland displaying independent evidence of subhorizontal flow. The digital processing of microphotographs from thin sections cut in (K1, K2) planes yields the preferred linear orientation of plagioclase, which apparently marks the magma flow lineation. In up to 60% of cases, the angular separation between K1 and the assumed flow direction is greater than 45degrees. This suggests that the uncorroborated use of magnetic lineations in dykes is risky. A simple geometrical method is proposed to infer the flow vector from AMS in dykes based solely on magnetic foliations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed analysis of fabrics of the chilled margin of a thick dolerite dyke (Foum Zguid dyke, Southern Morocco) was performed in order to better understand the development of sub-fabrics during dyke emplacement and cooling. AMS data were complemented with measurements of paramagnetic and ferrimagnetic fabrics (measured with high field torque magnetometer), neutron texture and microstructural analyses. The ferrimagnetic and AMS fabrics are similar, indicating that the ferrimagnetic minerals dominate the AMS signal. The paramagnetic fabric is different from the previous ones. Based on the crystallization timing of the different mineralogical phases, the paramagnetic fabric appears related to the upward flow, while the ferrimagnetic fabric rather reflects the late-stage of dyke emplacement and cooling stresses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Pressure ulcers are a high cost, high volume issue for health and medical care providers, having a detrimental effect on patients and relatives. Pressure ulcer prevention is widely covered in the literature, but little has been published regarding the risk to patients in the radiographical setting. This review of the current literature is to identify findings relevant to radiographical context. Methods: Literature searching was performed using Science Direct and Medline databases. The search was limited to articles published in the last ten years to remain current and excluded studies containing participants less than 17 years of age. In total 14 studies were acquired; three were excluded as they were not relevant. The remaining 11 studies were compared and reviewed. Discussion: Eight of the studies used ‘healthy’ participants and three used symptomatic participants. Nine studies explored interface pressure with a range of pressure mat technologies, two studies measured shear (MRI finite element modelling, and a non-invasive instrument), and one looked at blood flow and haemoglobin oxygenation. A range of surfaces were considered from trauma, nursing and surgical backgrounds for their ability to reduce pressure including standard mattresses, high specification mattresses, rigid and soft layer spine boards, various overlays (gel, air filled, foam). Conclusion: The current literature is not appropriate for the radiographic patient and cannot be extrapolated to a radiologic context. Sufficient evidence is presented in this review to support the need for further work specific to radiography in order to minimise the development of PU in at risk patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.