34 resultados para 71 - Urbanisme. Paisatgisme, parcs i jardins
Resumo:
Reaction of the tris(3-phenylpyrazolyl)methane sulfonate species (Tpms(Ph))Li with the copper(I) complex [Cu(MeCN)(4)][PF6] affords [Cu(Tpms(Ph))(MeCN)] 1. The latter, upon reaction with equimolar amounts of cyclohexyl-(CyNC) or 2,6-dimethylphenyl (XylNC) isocyanides, or excess CO, furnishes the corresponding Cu(I)complexes [Cu(Tpms(Ph))(CNR)] (R = Cy 2, Xyl 3) or [Cu(Tpms(Ph))(CO)] 4. The ligated isocyanide in 2 or 3 (or the acetonitrile ligand in 1)is displaced by 3-iminoisoindolin-1-one to afford 5, the first copper(I) complex containing an 3-iminoisoindolin-1-one ligand. The ligated acetonitrile in 1 undergoes nucleophilic attack by methylamine to give the amidine complex [Cu(Tpms(Ph)){MeC(NH)NHMe}] 6, whereas only the starting materials were recovered from the attempted corresponding reactions of 2 and 3 with methylamine. Complexes 1 or 6 form the trinuclear hydroxo-copper(II)species [(mu-Cu){Cu(mu-OH) (2)(Tpms(Ph))}(2)] 7 upon air oxidation in moist methanol. In all the complexes the scorpionate ligand facially caps the metal in the N,N,O-coordination mode.
Resumo:
We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.
Resumo:
The conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) represents a unique natural laboratory for addressing fundamental questions about rifting due to its landlocked situation, its youth, its thick sedimentary layers, including prominent palaeo-marker such as the MSC event, and the amount of available data and multidisciplinary studies. The main goals of the SARDINIA experiment, were to (i) investigate the deep structure of the entire system within the two conjugate margins: the Gulf of Lion and West Sardinia, (ii) characterize the nature of the crust, and (iii) define the geometry of the basin and provide important constrains on its genesis. This paper presents the results of P-wave velocity modelling on three coincident near-vertical reflection multi-channel seismic (MCS) and wide-angle seismic profiles acquired in the Gulf of Lion, to a depth of 35 km. A companion paper [part II Afilhado et al., 2015] addresses the results of two other SARDINIA profiles located on the oriental conjugate West Sardinian margin. Forward wide-angle modelling of both data sets confirms that the margin is characterised by three distinct domains following the onshore unthinned, 33 km-thick continental crust domain: Domain I is bounded by two necking zones, where the crust thins respectively from 30 to 20 and from 20 to 7 km over a width of about 170 km; the outermost necking is imprinted by the well-known T-reflector at its crustal base; Domain II is characterised by a 7 km-thick crust with anomalous velocities ranging from 6 to 7.5 km/s; it represents the transition between the thinned continental crust (Domain I) and a very thin (only 4-5 km) "atypical" oceanic crust (Domain III). In Domain II, the hypothesis of the presence of exhumed mantle is falsified by our results: this domain may likely consist of a thin exhumed lower continental crust overlying a heterogeneous, intruded lower layer. Moreover, despite the difference in their magnetic signatures, Domains II and III present the very similar seismic velocities profiles, and we discuss the possibility of a connection between these two different domains.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.