27 resultados para quantitative image analysis
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.
Resumo:
The amount of fat is a component that complicates the clinical evaluation and the differential diagnostic between benign and malign lesions in the breast MRI examinations. To overcome this problem, an effective erasing of the fat signal over the images acquisition process, is essentials. This study aims to compare three fat suppression techniques (STIR, SPIR, SPAIR) in the MR images of the breast and to evaluate the best image quality regarding its clinical usefulness. To mimic breast women, a breast phantom was constructed. First the exterior contour and, in second time, its content which was selected based on 7 samples with different components. Finally it was undergone to a MRI breast protocol with the three different fat saturation techniques. The examinations were performed on a 1.5 T MRI system (Philips®). A group of 5 experts evaluated 9 sequences, 3 of each with fat suppression techniques, in which the frequency offset and TI (Inversion Time) were the variables changed. This qualitative image analysis was performed according 4 parameters (saturation uniformity, saturation efficacy, detail of the anatomical structures and differentiation between the fibroglandular and adipose tissue), using a five-point Likert scale. The statistics analysis showed that anyone of the fat suppression techniques demonstrated significant differences compared to the others with (p > 0.05) and regarding each parameter independently. By Fleiss’ kappa coefficient there was a good agreement among observers P(e) = 0.68. When comparing STIR, SPIR and SPAIR techniques it was confirmed that all of them have advantages in the study of the breast MRI. For the studied parameters, the results through the Friedman Test showed that there are similar advantages applying anyone of these techniques.
Resumo:
Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II
Resumo:
Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.
Resumo:
A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility CAMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Treatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico
Resumo:
The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete’s microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC’s microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC’s durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA. © 2015 RILEM.
Resumo:
In machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.
Resumo:
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.