77 resultados para optical heterodyne detection
Resumo:
Novel alternating copolymers comprising biscalix[4]arene-p-phenylene ethynylene and m-phenylene ethynylene units (CALIX-m-PPE) were synthesized using the Sonogashira-Hagihara cross-coupling polymerization. Good isolated yields (60-80%) were achieved for the polymers that show M-n ranging from 1.4 x 10(4) to 5.1 x 10(4) gmol(-1) (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX-m-PPE was performed by H-1, C-13, C-13-H-1 heteronuclear single quantum correlation (HSQC), C-13-H-1 heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform-Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16-45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX-m-PPE does not form ground-or excited-state interchain interactions owing to the highly crowded environment of the main-chain imparted by both calix[4]arene side units which behave as insulators inhibiting main-chain pi-pi staking. It was also found that the luminescent properties of CALIX-m-PPE are markedly different from those of an all-p-linked phenylene ethynylene copolymer (CALIX-p-PPE) previously reported. The unexpected appearance of a low-energy emission band at 426 nm, in addition to the locally excited-state emission (365 nm), together with a quite low fluorescence quantum yield (Phi = 0.02) and a double-exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species.
Resumo:
In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.
Resumo:
O objectivo do presente trabalho foi desenvolver, implementar e validar métodos de determinação de teor de cálcio (Ca), magnésio (Mg), sódio (Na), potássio (K) e fósforo (P) em biodiesel, por ICP-OES. Este método permitiu efectuar o controlo de qualidade do biodiesel, com a vantagem de proporcionar uma análise multi-elementar, reflectindo-se numa diminuição do tempo de análise. Uma vez que o biodiesel é uma das principais fontes de energia renovável e alternativa ao diesel convencional, este tipo de análises revela-se extremamente útil para a sua caracterização. De acordo com a análise quantitativa e qualitativa e após a validação dos respectivos ensaios, apresentam-se, na Tabela 1 as condições optimizadas para cada elemento em estudo. As condições de trabalho do ICP-OES foram escolhidas tendo em conta as características do elemento em estudo, o tipo de equipamento utilizado para a sua análise, e de modo a obter a melhor razão sinal/intensidade de fundo. Para a validação dos ensaios foram efectuados ensaios de recuperação, determinados limites de detecção e quantificação, ensaios de repetibilidade e reprodutibilidade, e verificação das curvas de calibração. Na tabela 2 apresentam-se os comprimentos de onda escolhidos (livres de interferências) e respectivos limites de detecção e quantificação dos elementos analisados por ICP-OES, na posição radial e radial atenuado.
Resumo:
The devastating impact of the Sumatra tsunami of 26 December 2004, raised the question for scientists of how to forecast a tsunami threat. In 2005, the IOC-UNESCO XXIII assembly decided to implement a global tsunami warning system to cover the regions that were not yet protected, namely the Indian Ocean, the Caribbean and the North East Atlantic, the Mediterranean and connected seas (the NEAM region). Within NEAM, the Gulf of Cadiz is the more sensitive area, with an important record of devastating historical events. The objective of this paper is to present a preliminary design for a reliable tsunami detection network for the Gulf of Cadiz, based on a network of sea-level observatories. The tsunamigenic potential of this region has been revised in order to define the active tectonic structures. Tsunami hydrodynamic modeling and GIS technology have been used to identify the appropriate locations for the minimum number of sea-level stations. Results show that 3 tsunameters are required as the minimum number of stations necessary to assure an acceptable protection to the large coastal population in the Gulf of Cadiz. In addition, 29 tide gauge stations could be necessary to fully assess the effects of a tsunami along the affected coasts of Portugal, Spain and Morocco.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
In this paper, we present results on the use of multilayered a-SiC:H heterostructures as a device for wavelength-division demultiplexing of optical signals. These devices are useful in optical communications applications that use the wavelength division multiplexing technique to encode multiple signals into the same transmission medium. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photo generated carriers. Band gap engineering was used to adjust the photogeneration and recombination rate profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. A demux algorithm based on the voltage controlled sensitivity of the device was proposed and tested. An electrical model of the WDM device is presented and supported by the solution of the respective circuit equations.
Resumo:
We present structural, optical and transport data on GaN samples grown by hybrid, two-step low temperature pulsed laser deposition. The band gap of samples with good crystallinity has been deduced from optical spectra. Large below gap band tails were observed. In samples with the lowest crystalline quality the PL spectra are quite dependent on spot laser incidence. The most intense PL lines can be attributed to excitons bounded to stacking faults. When the crystalline quality of the samples is increased the ubiquitous yellow emission band can be detected following a quenching process described by a similar activation energy to that one found in MOCVD grown samples. The samples with the highest quality present, besides the yellow band, show a large near band edge emission which peaked at 3.47 eV and could be observed up to room temperature. The large width of the NBE is attributed to effect of a wide distribution of band tail states on the excitons. Photoconductivity data supports this interpretation.
Resumo:
In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimental and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing photo capacitance to control the power delivered to the load.
Resumo:
Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Introdução – A diabetes é uma das maiores epidemias do último século. Mais de 250 milhões de pessoas, em todo o mundo, sofrem de diabetes. Das complicações derivadas da diabetes são as principais causas de cegueira, de insuficiência renal e de amputação de membros inferiores, derivando estes, predominantemente, da disfunção vascular. Quando surge perda de pericitos na parede vascular ocorrem uma série de alterações da microcirculação que levam ao aparecimento de microaneurismas e outras alterações vasculares que possibilitam a passagem de componentes sanguíneos para o tecido retiniano adjacente que, em situação de normalidade, não ocorreriam, sendo esta uma das causas do edema macular exsudativo diabético. A perimetria de hiperacuidade preferencial (PHP) é um teste psicofísico que pretende detetar metamorfopsias na Degenerescência Macular ligada à Idade (DMI). Uma vez que o edema macular diabético (EMD) se destaca como uma das principais causas de deficiência visual e baixa visão, pretende-se verificar a eficácia do PHP no estudo do edema macular diabético, respondendo à seguinte questão: “Qual a capacidade do perímetro de hiperacuidade preferencial em detetar metamorfopsias em pacientes com edema macular diabético?“ Metodologia – Estudo quantitativo, do tipo descritivo e correlacional. Selecionou-se uma amostra de 33 pacientes, onde se analisou um total de 60 olhos. Resultados – A sensibilidade do PHP na deteção de metamorfopsias associadas ao EMD na tomografia de coerência ótica (OCT) foi de 70,6%, a especificidade foi de 11,5% e a eficiência global do teste de 45%. Comparando os resultados encontrados no PHP e no OCT, constatou-se a existência de uma correlação inversa fraca (Phi = -0,215). Conclusões – Este novo método de diagnóstico revela-se sensível, contudo pouco específico e eficaz na deteção de metamorfopsias consequentes da existência de EMD. - ABSTRACT - Introduction – Preferential hyperacuity perimeter (PHP) is a new psychophysical test, which principle is based on the detection of metamorphopsia in age-related macular degeneration (AMD). It is intended to verify its effectiveness in the study of diabetic macular edema (DME). When there is loss of pericytes in the vascular wall occur a number of microcirculatory changes that lead to the appearance of microaneurysms and other vascular changes that allow the passage of blood components to the surrounding retinal tissue than in normal situation does not occur, this being one of the causes exudative diabetic macular edema. Methodology – It was performed a quantitative study, using descriptive and correlational analysis. A sample of 33 patients was selected, and 60 eyes were analyzed. Results – The sensitivity of PHP on the detection of metamorphopsia associated to EMD was 70.6%, the specificity was 11.5% and the global efficiency of the test was 45%. It was found a weak negative correlation (Phi= -0.215) between the PHP and optical coherence tomography (OCT). Conclusions – This new method of diagnosis was sensitive, but not very specific and effective on the detection of metamorphopsia, due to the DME.
Resumo:
Structures experience various types of loads along their lifetime, which can be either static or dynamic and may be associated to phenomena of corrosion and chemical attack, among others. As a consequence, different types of structural damage can be produced; the deteriorated structure may have its capacity affected, leading to excessive vibration problems or even possible failure. It is very important to develop methods that are able to simultaneously detect the existence of damage and to quantify its extent. In this paper the authors propose a method to detect and quantify structural damage, using response transmissibilities measured along the structure. Some numerical simulations are presented and a comparison is made with results using frequency response functions. Experimental tests are also undertaken to validate the proposed technique. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Amorphous Si/SiC photodiodes working as photo-sensing or wavelength sensitive devices have been widely studied. In this paper single and stacked a-SiC:H p-i-n devices, in different geometries and configurations, are reviewed. Several readout techniques, depending on the desired applications (image sensor, color sensor, wavelength division multiplexer/demultiplexer device) are proposed. Physical models are presented and supported by electrical and numerical simulations of the output characteristics of the sensors.
Resumo:
In this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field, however other applications are also foreseen.