31 resultados para modelli input-output programmazione lineare grafi pesati
Resumo:
Tunable wavelength division multiplexing converters based on amorphous SiC multilayer photonic active filters are analyzed. The configuration includes two stacked p-i-n structures (p(a-SiC:H)-i'(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts. The manipulation of the magnitude is achieved through appropriated front and back backgrounds. Transfer function characteristics are studied both theoretically and experimentally. An algorithm to decode the multiplex signal is established. An optoelectronic model supports the optoelectronic logic architecture. Results show that the light-activated device combines the demultiplexing operation with the simultaneous photodetection and self-amplification of an optical signal. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. Depending on the wavelength of the external background and irradiation side, it acts either as a short- or a long-pass band filter or as a band-stop filter. A two-stage active circuit is presented and gives insight into the physics of the device.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Vienna, Austria, Nov 10-14, 2013
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil
Resumo:
The long term evolution (LTE) is one of the latest standards in the mobile communications market. To achieve its performance, LTE networks use several techniques, such as multi-carrier technique, multiple-input-multiple-output and cooperative communications. Inside cooperative communications, this paper focuses on the fixed relaying technique, presenting a way for determining the best position to deploy the relay station (RS), from a set of empirical good solutions, and also to quantify the associated performance gain using different cluster size configurations. The best RS position was obtained through realistic simulations, which set it as the middle of the cell's circumference arc. Additionally, it also confirmed that network's performance is improved when the number of RSs is increased. It was possible to conclude that, for each deployed RS, the percentage of area served by an RS increases about 10 %. Furthermore, the mean data rate in the cell has been increased by approximately 60 % through the use of RSs. Finally, a given scenario with a larger number of RSs, can experience the same performance as an equivalent scenario without RSs, but with higher reuse distance. This conduces to a compromise solution between RS installation and cluster size, in order to maximize capacity, as well as performance.
Resumo:
Expanding far beyond traditional applications at telecommunications wavelengths, the SiC photonic devices has recently proven its merits for working with visible range optical signals. Reconfigurable wavelength selectors are essential sub-systems for implementing reconfigurable WDM networks and optical signal processing. Visible range to telecom band spectral translation in SiC/Si can be accomplished using wavelength selector under appropriated optical bias, acting as reconfigurable active filters. In this paper we present a monolithically integrated wavelength selector based on a multilayer SiC/Si integrated optical filters that requires optical switches to select wavelengths. The selector filter is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Red, green, blue and violet communication channels are transmitted together, each one with a specific bit sequence. The combined optical signal is analyzed by reading out the generated photocurrent, under different background wavelengths applied either from the front or the back side. The backgrounds acts as channel selectors that selects one or more channels by splitting portions of the input multi-channel optical signals across the front and back photodiodes. The transfer characteristics effects due to changes in steady state light, irradiation side and frequency are presented. The relationship between the optical inputs and the digital output levels is established. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A mathematical model that simulates the operation of a solid-state bipolar Marx modulator topology, including the influence of parasitic capacitances is presented and discussed as a tool to analyze the circuit behavior and to assist the design engineer to select the semiconductor components and to enhance the operating performance. Simulations show good agreement with experimental results, considering a four stage circuit assembled with 1200 V isolated gate bipolar transistors and diodes, operating at 1000 V dc input voltage and 1-kHz frequency, giving 4 kV and 10-mu s output pulses into several resistive loads. Results show that parasitic capacitances between Marx cells to ground can significantly load the solid-state switches, adding new operating circuit conditions.
Resumo:
The behavior of tandem pin heterojunctions based on a-SiC: H alloys is investigated under different optical and electrical bias conditions. The devices are optimized to act as optically selective wavelength filters. Depending on the device configuration (optical gaps, thickness, sequence of cells in the stack structure) and on the applied voltage (positive or negative) and optical bias (wavelength, intensity, frequency) it is possible to combine the wavelength discrimination function with the self amplification of the signal. This wavelength nonlinearity allows the amplification or the rejection of a weak signal-impulse. The device works as an active tunable optical filter for wavelength selection and can be used as an add/drop multiplexer (ADM) which enables data to enter and leave an optical network bit stream without having to demultiplex the stream. Results show that, even under weak transient input signals, the background wavelength controls the output signal. This nonlinearity, due to the transient asymmetrical light penetration of the input channels across the device together with the modification on the electrical field profile due to the optical bias, allows tuning an input channel without demultiplexing the stream. This high optical nonlinearity makes the optimized devices attractive for the amplification of all optical signals. Transfer characteristics effects due to changes in steady state light, control d.c. voltage and applied light pulses are presented. Based on the experimental results and device configuration an optoelectronic model is developed. The transfer characteristics effects due to changes in steady state light, dc control voltage or applied light pulses are simulated and compared with the experimental data. A good agreement was achieved.
Resumo:
The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
A double pi'npin heterostructure based on amorphous SiC has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. An impulse of a configurable length and amplitude is applied to a 390 nm LED which illuminates one of the sensor surfaces, followed by a time period without any illumination after which an input signal with a different wavelength is impinged upon the front surface. Results show that the intensity and duration of the impulse illumination of the surfaces influences the sensor's response with different output for the same input signal. This paper studies this effect and proposes an application as a short term light memory. (C) 2015 Elsevier B.V. All rights reserved.