36 resultados para lorentz symmetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We produce five flavour models for the lepton sector. All five models fit perfectly well - at the 1 sigma level - the existing data on the neutrino mass-squared differences and on the lepton mixing angles. The models are based on the type I seesaw mechanism, on a Z(2) symmetry for each lepton flavour, and either on a (spontaneously broken) symmetry under the interchange of two lepton flavours or on a (spontaneously broken) CP symmetry incorporating that interchange - or on both symmetries simultaneously. Each model makes definite predictions both for the scale of the neutrino masses and for the phase delta in lepton mixing; the fifth model also predicts a correlation between the lepton mixing angles theta(12) and theta(23).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the two Higgs doublet model, there is the possibility that the vacuum where the universe resides in is metastable. We present the tree-level bounds on the scalar potential parameters which have to be obeyed to prevent that situation. Analytical expressions for those bounds are shown for the most used potential, that with a softly broken Z(2) symmetry. The impact of those bounds on the model's phenomenology is discussed in detail, as well as the importance of the current LHC results in determining whether the vacuum we live in is or is not stable. We demonstrate how the vacuum stability bounds can be obtained for the most generic CP-conserving potential, and provide a simple method to implement them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study neutrino masses and mixing in the context of flavor models with A(4) symmetry, three scalar doublets in the triplet representation, and three lepton families. We show that there is no representation assignment that yields a dimension-5 mass operator consistent with experiment. We then consider a type-I seesaw with three heavy right-handed neutrinos, explaining in detail why it fails, and allowing us to show that agreement with the present neutrino oscillation data can be recovered with the inclusion of dimension-3 heavy neutrino mass terms that break softly the A(4) symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first version of a new tool to scan the parameter space of generic scalar potentials, SCANNERS (Coimbra et al., SCANNERS project., 2013). The main goal of SCANNERS is to help distinguish between different patterns of symmetry breaking for each scalar potential. In this work we use it to investigate the possibility of excluding regions of the phase diagram of several versions of a complex singlet extension of the Standard Model, with future LHC results. We find that if another scalar is found, one can exclude a phase with a dark matter candidate in definite regions of the parameter space, while predicting whether a third scalar to be found must be lighter or heavier. The first version of the code is publicly available and contains various generic core routines for tree level vacuum stability analysis, as well as implementations of collider bounds, dark matter constraints, electroweak precision constraints and tree level unitarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the scenario of resonant thermal leptogenesis, in which the leptonic asymmetries are generated through renormalization group corrections induced at the leptogenesis scale. In the framework of the standard model extended by three heavy Majorana neutrinos with masses M(1) = M(2) << M(3) at some high scale, we show that the mass splitting and CP-violating effects induced by renormalization group corrections can lead to values of the CP asymmetries large enough for a successful leptogenesis. In this scenario, the low-energy neutrino oscillation data can also be easily accommodated. The possibility of having an underlying symmetry behind the degeneracy in the right-handed neutrino mass spectrum is also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new model of the lepton sector that uses a family symmetry A(4) to make predictions for lepton mixing which are invariant under any permutation of the three flavours. We show that those predictions broadly agree with the experimental data, leading to a largish sin(2)theta(12) greater than or similar to 0.34, to vertical bar cos delta vertical bar greater than or similar to 0.7, and to vertical bar 0.5 - sin(2)theta(23)vertical bar greater than or similar to 0.08; cos delta and 0.5 - sin(2)theta(23) are predicted to have identical signs. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agência Financiadora: Fundação para a Ciência e a Tecnologia (FCT) - PEst-OE/FIS/UI0777/2013; CERN/FP/123580/2011; PTDC/FIS-NUC/0548/2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study a flavour model with a non-minimal Higgs sector one must first define the symmetries of the fields; then identify what types of vacua exist and how they may break the symmetries; and finally determine whether the remnant symmetries are compatible with the experimental data. Here we address all these issues in the context of flavour models with any number of Higgs doublets. We stress the importance of analysing the Higgs vacuum expectation values that are pseudo-invariant under the generators of all subgroups. It is shown that the only way of obtaining a physical CKM mixing matrix and, simultaneously, non-degenerate and non-zero quark masses is requiring the vacuum expectation values of the Higgs fields to break completely the full flavour group, except possibly for some symmetry belonging to baryon number. The application of this technique to some illustrative examples, such as the flavour groups Delta (27), A(4) and S-3, is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the two-Higgs-doublet model as a framework in which to evaluate the viability of scenarios in which the sign of the coupling of the observed Higgs boson to down-type fermions (in particular, b-quark pairs) is opposite to that of the Standard Model (SM), while at the same time all other tree-level couplings are close to the SM values. We show that, whereas such a scenario is consistent with current LHC observations, both future running at the LHC and a future e(+)e(-) linear collider could determine the sign of the Higgs coupling to b-quark pairs. Discrimination is possible for two reasons. First, the interference between the b-quark and the t-quark loop contributions to the ggh coupling changes sign. Second, the charged-Higgs loop contribution to the gamma gamma h coupling is large and fairly constant up to the largest charged-Higgs mass allowed by tree-level unitarity bounds when the b-quark Yukawa coupling has the opposite sign from that of the SM (the change in sign of the interference terms between the b-quark loop and the W and t loops having negligible impact).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.