30 resultados para laboratory waste
Resumo:
Objectives - This study intended to characterize work environment contamination by particles in 2 waste-sorting plants. Material and Methods - Particles were measured by portable direct-reading equipment. Besides mass concentration in different sizes, data related with the number of particles concentration were also obtained. Results - Both sorting units showed the same distribution concerning the 2 exposure metrics: particulate matter 5 (PM5) and particulate matter 10 (PM10) reached the highest levels and 0.3 μm was the fraction with a higher number of particles. Unit B showed higher (p < 0.05) levels for both exposure metrics. For instance, in unit B the PM10 size is 9-fold higher than in unit A. In unit A, particulate matter values obtained in pre-sorting and in the sequential sorting cabinet were higher without ventilation working. Conclusions - Workers from both waste-sorting plants are exposed to particles. Particle counting provided additional information that is of extreme value for analyzing the health effects of particles since higher values of particles concentration were obtained in the smallest fraction.
Resumo:
Hoje em dia muitos dos equipamentos elétricos e eletrónicos que compramos ficam obsoletos num curto espaço de tempo por causa dos rápidos avanços tecnológicos neste campo. Equipamentos como computadores, telemóveis e equipamentos elétricos e eletrónicos de pequeno e grande porte são transformados em lixo eletrónico e muitos deles são despejados no lixo comum. Para alterar este cenário, a União Europeia publicou diretivas neste domínio com o intuito de controlar o crescimento do lixo eletrónico e reduzir o seu impacto. Neste contexto, a Universidade de Yaşar (Turquia) submeteu à União Europeia um projeto (EWASTEU) com o objetivo de fornecer uma visão do que está acontecer com o equipamento transformado em lixo eletrónico e de apresentar algumas propostas para minimizar este problema. Uma das principais questões a ser respondida será a adequação das diretivas europeias.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Vias de Comunicação e Transportes
Resumo:
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m−3 before cleaning and from 220 to 2,460 CFU m−3 after cleaning procedures. Surfaces presented results that ranged from 29 × 104 to 109 × 104 CFU m−2 before cleaning and from 11 × 104 to 89 × 104 CFU m−2 after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.
Resumo:
Contrary to fungi, exposure to mycotoxins is not usually identified as a risk factor present in occupational settings. This is probably due to the inexistence of limits regarding concentration of airborne mycotoxins, and also due to the fact that these compounds are rarely monitored in occupational environments. Despite the optimal conditions for fungal growth and, consequently, for mycotoxins production in all the waste management chain, only a few articles were dedicated to study occupational exposure to mycotoxins in this occupational setting. Aim of study: A study was developed in Portugal aiming to assess occupational co-exposure to mycotoxins in the waste management setting.
Resumo:
In this paper a new simulation environment for a virtual laboratory to educational proposes is presented. The Logisim platform was adopted as the base digital simulation tool, since it has a modular implementation in Java. All the hardware devices used in the laboratory course was designed as components accessible by the simulation tool, and integrated as a library. Moreover, this new library allows the user to access an external interface. This work was motivated by the needed to achieve better learning times on co-design projects, based on hardware and software implementations, and to reduce the laboratory time, decreasing the operational costs of engineer teaching. Furthermore, the use of virtual laboratories in educational environments allows the students to perform functional tests, before they went to a real laboratory. Moreover, these functional tests allow to speed-up the learning when a problem based approach methodology is considered. © 2014 IEEE.
Resumo:
This paper presents the new internet remote laboratory (IRL), constructed at Mechanical Engineering Department (MED), Instituto Superior de Engenharia de Lisboa (ISEL), to teach Industrial Automation, namely electropneumatic cycles. The aim of this work was the development and implementation of a remote laboratory that was simple and effective from the user point of view, allowing access to all its functionalities through a web browser without having to install any other program and giving access to all the features that the students can find at the physical laboratory. With this goal in mind, it has been implemented a simple architecture with the new programmable logic controller (PLC) SIEMENS S7-1200, and with the aid of several free programs, programming technologies such as JavaScript, PHP and databases, it was possible to have a remote laboratory, with a simple interface, to teach industrial automation students.
Resumo:
The most active phase of the fluid catalytic cracking (FCC) catalyst, used in oil refinery, is zeolite-Y which is an aluminosilicate with a high internal and external surface area responsible for its high reactivity. Waste FCC catalyst is potentially able to be reused in cement-based materials - as an additive - undergoing a pozzolanic reaction with calcium hydroxide (Ca(OH)2) formed during cement hydration [1-3]. This reaction produces additional strength-providing reaction products i.e., calcium silicate hydrate (C-S-H) and hydrous calcium aluminates (C-A-H) which exact chemical formula and structure are still unknown. Partial replacement of cement by waste FCC catalyst has two key advantages: (1) lowering of cement production with the associated pollution reduction as this industry represents one of the largest sources of man-made CO2 emissions, and (2) improving the mechanical properties and durability of cement-based materials. Despite these advantages, there is a lack of fundamental knowledge on pozzolanic reaction mechanisms as well as spatial distribution of porosity and solid phases interactions at the microstructural level and consequently their relationship with macroscopical engineering properties of catalyst/cement blends. Within this scope, backscattered electron (BSE) images acquired in a scanning electron microscope (SEM) equipped with Energy-Dispersive Spectroscopy (EDS) and by X-ray diffraction were used to investigate chemical composition of hydration products and to analyse spatial information of the microstructure of waste FCC catalyst blended cement mortars. For this purpose mortars with different levels of cement substitution by waste catalyst as well as with different hydration ages, were prepared. The waste FCC catalyst used is produced by the Portuguese refinery company Petrogal S.A.
Resumo:
The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.
Resumo:
This research aims at analysing the mechanical performance of concrete with recycled aggregates (RA) from construction and demolition waste (CDW) from various locations in Portugal. First the characteristics of the various aggregates (natural and recycled) used in the production of concrete were thoroughly analysed. The composition of the RA was determined and several physical and chemical tests of the aggregates were performed. In order to evaluate the mechanical performance of concrete, compressive strength (in cubes and cylinders), splitting tensile strength, modulus of elasticity and abrasion resistance tests were performed. Concrete mixes with RA from CDW from several recycling plants were evaluated, in order to understand the influence that the RA's collection point, and consequently their composition, has on the characteristics of the mixes produced. The analysis of the mechanical performance allowed concluding that the use of RA worsens most of the properties tested, especially when fine RA are used. On the other hand, there was an increase in abrasion resistance when coarse RA were used. In global terms, the use of this type of aggregates, in limited contents, is viable from a mechanical viewpoint. (C) 2015 Elsevier Ltd. All rights reserved.
Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste
Resumo:
This paper assesses the physical, chemical and mineralogical characteristics of fine recycled aggregates obtained from crushed concrete waste, comparing them with two types of natural fine aggregates from different origins. A commercial concrete was jaw crushed, and the effect of different aperture sizes on the particle size distribution of the resulting aggregates was evaluated. The density and water absorption of the recycled aggregates was determined and a model for predicting water absorption over time is proposed. Both natural and recycled aggregates were characterized regarding bulk density and fines content. Recycled aggregates were additionally characterized by XRD, SEM/EDS and DTA/TG of individual size fractions. The results show that natural and recycled fine aggregates have very different characteristics. This should be considered in potential applications, both in terms of the limits for replacing amounts and of the rules and design criteria of the manufactured products. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The interest of the study on the implementation of expanded agglomerated cork as exterior wall covering derives from two critical factors in a perspective of sustainable development: the use of a product consisting of a renewable natural material-cork-and the concern to contribute to greater sustainability in construction. The study aims to assess the feasibility of its use by analyzing the corresponding behaviour under different conditions. Since this application is relatively recent, only about ten years old, there is still much to learn about the reliability of its long-term properties. In this context, this study aims to deepen and approach aspects, some of them poorly studied and even unknown, that deal with characteristics that will make the agglomerate a good choice for exterior wall covering. The analysis of these and other characteristics is being performed by testing both under actual exposure conditions, on an experimental cell at LNEC, and on laboratory. In this paper the main laboratory tests are presented and the obtained results are compared with the outcome of the field study. © (2015) Trans Tech Publications, Switzerland.
Resumo:
Present paper present the main results obtained in the scope of an ongoing project which aims to contribute to the valorization of a waste generated by the Portuguese oil company in construction materials. This waste is an aluminosilicate with high pozzolanic reactivity. Several different technological applications had already been tested with success both in terms of properties and compliance with the corresponding standards specifications. Namely, this project results already demonstrated that this waste can be used in traditional concrete, self-compacted concrete, mortars (renders, masonry mortar, concrete repair mortars), cement main constituent as well as alkali activated binders.
Resumo:
This work intends to evaluate the (mechanical and durability) performance of concrete made with coarse recycled concrete aggregates (CRCA) obtained using two crushing processes: primary crushing (PC) and primary plus secondary crushing (PSC). This analysis intends to select the most efficient production process of recycled aggregates (RA). The RA used here resulted from precast products (P), with strength classes of 20 MPa, 45 MPa and 65 MPa, and from laboratory-made concrete (L) with the same compressive strengths. The evaluation of concrete was made with the following tests: compressive strength; splitting tensile strength; modulus of elasticity; carbona-tion resistance; chloride penetration resistance; capillary water absorption; and water absorption by immersion. These findings contribute to a solid and innovative basis that allows the precasting industry to use without restrictions the waste it generates. © (2015) Trans Tech Publications, Switzerland.