27 resultados para frequency features
Resumo:
Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.
Resumo:
In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Locomotor tasks characterization plays an important role in trying to improve the quality of life of a growing elderly population. This paper focuses on this matter by trying to characterize the locomotion of two population groups with different functional fitness levels (high or low) while executing three different tasks-gait, stair ascent and stair descent. Features were extracted from gait data, and feature selection methods were used in order to get the set of features that allow differentiation between functional fitness level. Unsupervised learning was used to validate the sets obtained and, ultimately, indicated that it is possible to distinguish the two population groups. The sets of best discriminate features for each task are identified and thoroughly analysed. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Two new metal- organic compounds {[Cu-3(mu(3)-4-(p)tz)(4)(mu(2)-N-3)(2)(DMF)(2)](DMF)(2)}(n) (1) and {[Cu(4ptz) (2)(H2O)(2)]}(n) (2) {4-ptz = 5-(4-pyridyl)tetrazolate} with 3D and 2D coordination networks, respectively, have been synthesized while studying the effect of reaction conditions on the coordination modes of 4-pytz by employing the [2 + 3] cycloaddition as a tool for generating in situ the 5-substituted tetrazole ligands from 4-pyridinecarbonitrile and NaN3 in the presence of a copper(II) salt. The obtained compounds have been structurally characterized and the topological analysis of 1 discloses a topologically unique trinodal 3,5,6-connected 3D network which, upon further simplification, results in a uninodal 8-connected underlying net with the bcu (body centred cubic) topology driven by the [Cu-3(mu(2)-N-3)(2)] cluster nodes and mu(3)-4-ptz linkers. In contrast, the 2D metal-organic network in 2 has been classified as a uninodal 4-connected underlying net with the sql [Shubnikov tetragonal plane net] topology assembled from the Cu nodes and mu(2)-4-ptz linkers. The catalytic investigations disclosed that 1 and 2 act as active catalyst precursors towards the microwave-assisted homogeneous oxidation of secondary alcohols (1-phenylethanol, cyclohexanol, 2-hexanol, 3-hexanol, 2-octanol and 3-octanol) with tert-butylhydroperoxide, leading to the yields of the corresponding ketones up to 86% (TOF = 430 h(-1)) and 58% (TOF = 290 h(-1)) in the oxidation of 1-phenylethanol and cyclohexanol, respectively, after 1 h under low power ( 10 W) microwave irradiation, and in the absence of any added solvent or additive.
Resumo:
In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.
Resumo:
This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
Risk Based Inspection (RBI) is a risk methodology used as the basis for prioritizing and managing the efforts for an inspection program allowing the allocation of resources to provide a higher level of coverage on physical assets with higher risk. The main goal of RBI is to increase equipment availability while improving or maintaining the accepted level of risk. This paper presents the concept of risk, risk analysis and RBI methodology and shows an approach to determine the optimal inspection frequency for physical assets based on the potential risk and mainly on the quantification of the probability of failure. It makes use of some assumptions in a structured decision making process. The proposed methodology allows an optimization of inspection intervals deciding when the first inspection must be performed as well as the subsequent intervals of inspection. A demonstrative example is also presented to illustrate the application of the proposed methodology.
Resumo:
As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.