21 resultados para fast decoupled power flow
Resumo:
Knowledge on forced magma injection and magma flow in dykes is crucial for the understanding of how magmas migrate through the crust to the Earth's surface. Because many questions still persist, we used the long, thick, and deep-seated Foum Zguid dyke (Morocco) to investigate dyke emplacement and internal flow by means of magnetic methods, structural analysis, petrography, and scanning electron microscopy. We also investigated how the host rocks accommodated the intrusion. Regarding internal flow: 1. Important variations of the rock magnetic properties and magnetic fabric occur with distance from dyke wall; 2. anisotropy of anhysteretic remanent magnetization reveals that anisotropy of magnetic susceptibility (AMS) results mainly from the superposition of subfabrics with distinct coercivities and that the imbrication between magnetic foliation and dyke plane is more reliable to deduce flow than the orientation of the AMS maximum principal axis; and 3. a dominant upward flow near the margins can be inferred. The magnetic fabric closest to the dyke wall likely records magma flow best due to fast cooling, whereas in the core the magnetic properties have been affected by high-temperature exsolution and metasomatic effects due to slow cooling. Regarding dyke emplacement, this study shows that the thick forceful intrusion induced deformation by homogeneous flattening and/or folding of the host sedimentary strata. Dewatering related to heat, as recorded by thick quartz veins bordering the dyke in some localities, may have also helped accommodating dyke intrusion. The spatial arrangement of quartz veins and their geometrical relationship with the dyke indicate a preintrusive to synintrusive sinistral component of strike slip.
Resumo:
The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted Glycosyl Phosphatidyl Inositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
The rheological and structural characteristics of acetoxypropylcellulose (APC) nematic melt are studied at shear rates ranging from 10 s(-1) to 1000 s(-1) which are relevant to extrusion based processes. APC shows a monotonic shear thinning behavior over the range of shear rates tested. The negative extrudate-swell shows a minimum when a critical shear rate (gamma) over dot(c) is reached. For shear rates smaller than (gamma) over dot(c), the flow-induced texture consists of two set of bands aligned parallel and normal to the flow direction. At shear rates larger than (gamma) over dot(c), the flow induced texture is reminiscent of a 2 fluids structure. Close to the shearing walls, domains elongated along the flow direction and stacked along the vorticity are imaged with POM, whereas SALS patterns indicate that the bulk of the sheared APC is made of elliptical domains oriented along the vorticity. No full nematic alignment is achieved at the largest shear rate tested. Below (gamma) over dot(c), the stress relaxation is described by a stretched exponential. Above (gamma) over dot(c), the stress relaxation is described by a fast and a slow process. The latter coincides with the growth of normal bands thicknesses, as the APC texture after flow cessation consists of two types of bands with parallel and normal orientations relative to the flow direction. Both bands thicknesses do not depend on the applied shear rate, in contrast to their orientation. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The use of a solar photovoltaic (PV) panel simulator can be a valued tool for the design and evaluation of the several components of a photovoltaic system. This simulator is based on power electronic converter controlled in such a way that will behave as a PV panel. Thus, in this paper a PV panel simulator based on a two quadrant DC/DC power converter is proposed. This topology will allow to achieve fast responses, like suddenly changes in the irradiation and temperature. To control the power converter it will be used a fast and robust sliding mode controller. Therefore, with the proposed system I-V curve simulation of a PV panel is obtained. Experimental results from a laboratory prototype are presented in order to confirm the theoretical operation.