34 resultados para clonal selection algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calculation of the dose is one of the key steps in radiotherapy planning1-5. This calculation should be as accurate as possible, and over the years it became feasible through the implementation of new algorithms to calculate the dose on the treatment planning systems applied in radiotherapy. When a breast tumour is irradiated, it is fundamental a precise dose distribution to ensure the planning target volume (PTV) coverage and prevent skin complications. Some investigations, using breast cases, showed that the pencil beam convolution algorithm (PBC) overestimates the dose in the PTV and in the proximal region of the ipsilateral lung. However, underestimates the dose in the distal region of the ipsilateral lung, when compared with analytical anisotropic algorithm (AAA). With this study we aim to compare the performance in breast tumors of the PBC and AAA algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferência - 16th International Symposium on Wireless Personal Multimedia Communications (WPMC)- Jun 24-27, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster analysis for categorical data has been an active area of research. A well-known problem in this area is the determination of the number of clusters, which is unknown and must be inferred from the data. In order to estimate the number of clusters, one often resorts to information criteria, such as BIC (Bayesian information criterion), MML (minimum message length, proposed by Wallace and Boulton, 1968), and ICL (integrated classification likelihood). In this work, we adopt the approach developed by Figueiredo and Jain (2002) for clustering continuous data. They use an MML criterion to select the number of clusters and a variant of the EM algorithm to estimate the model parameters. This EM variant seamlessly integrates model estimation and selection in a single algorithm. For clustering categorical data, we assume a finite mixture of multinomial distributions and implement a new EM algorithm, following a previous version (Silvestre et al., 2008). Results obtained with synthetic datasets are encouraging. The main advantage of the proposed approach, when compared to the above referred criteria, is the speed of execution, which is especially relevant when dealing with large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectivo do estudo: comparar o desempenho dos algoritmos Pencil Beam Convolution (PBC) e do Analytical Anisotropic Algorithm (AAA) no planeamento do tratamento de tumores de mama com radioterapia conformacional a 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In visual sensor networks, local feature descriptors can be computed at the sensing nodes, which work collaboratively on the data obtained to make an efficient visual analysis. In fact, with a minimal amount of computational effort, the detection and extraction of local features, such as binary descriptors, can provide a reliable and compact image representation. In this paper, it is proposed to extract and code binary descriptors to meet the energy and bandwidth constraints at each sensing node. The major contribution is a binary descriptor coding technique that exploits the correlation using two different coding modes: Intra, which exploits the correlation between the elements that compose a descriptor; and Inter, which exploits the correlation between descriptors of the same image. The experimental results show bitrate savings up to 35% without any impact in the performance efficiency of the image retrieval task. © 2014 EURASIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocardiography (ECG) biometrics is emerging as a viable biometric trait. Recent developments at the sensor level have shown the feasibility of performing signal acquisition at the fingers and hand palms, using one-lead sensor technology and dry electrodes. These new locations lead to ECG signals with lower signal to noise ratio and more prone to noise artifacts; the heart rate variability is another of the major challenges of this biometric trait. In this paper we propose a novel approach to ECG biometrics, with the purpose of reducing the computational complexity and increasing the robustness of the recognition process enabling the fusion of information across sessions. Our approach is based on clustering, grouping individual heartbeats based on their morphology. We study several methods to perform automatic template selection and account for variations observed in a person's biometric data. This approach allows the identification of different template groupings, taking into account the heart rate variability, and the removal of outliers due to noise artifacts. Experimental evaluation on real world data demonstrates the advantages of our approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In research on Silent Speech Interfaces (SSI), different sources of information (modalities) have been combined, aiming at obtaining better performance than the individual modalities. However, when combining these modalities, the dimensionality of the feature space rapidly increases, yielding the well-known "curse of dimensionality". As a consequence, in order to extract useful information from this data, one has to resort to feature selection (FS) techniques to lower the dimensionality of the learning space. In this paper, we assess the impact of FS techniques for silent speech data, in a dataset with 4 non-invasive and promising modalities, namely: video, depth, ultrasonic Doppler sensing, and surface electromyography. We consider two supervised (mutual information and Fisher's ratio) and two unsupervised (meanmedian and arithmetic mean geometric mean) FS filters. The evaluation was made by assessing the classification accuracy (word recognition error) of three well-known classifiers (knearest neighbors, support vector machines, and dynamic time warping). The key results of this study show that both unsupervised and supervised FS techniques improve on the classification accuracy on both individual and combined modalities. For instance, on the video component, we attain relative performance gains of 36.2% in error rates. FS is also useful as pre-processing for feature fusion. Copyright © 2014 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent integrated circuit technologies have opened the possibility to design parallel architectures with hundreds of cores on a single chip. The design space of these parallel architectures is huge with many architectural options. Exploring the design space gets even more difficult if, beyond performance and area, we also consider extra metrics like performance and area efficiency, where the designer tries to design the architecture with the best performance per chip area and the best sustainable performance. In this paper we present an algorithm-oriented approach to design a many-core architecture. Instead of doing the design space exploration of the many core architecture based on the experimental execution results of a particular benchmark of algorithms, our approach is to make a formal analysis of the algorithms considering the main architectural aspects and to determine how each particular architectural aspect is related to the performance of the architecture when running an algorithm or set of algorithms. The architectural aspects considered include the number of cores, the local memory available in each core, the communication bandwidth between the many-core architecture and the external memory and the memory hierarchy. To exemplify the approach we did a theoretical analysis of a dense matrix multiplication algorithm and determined an equation that relates the number of execution cycles with the architectural parameters. Based on this equation a many-core architecture has been designed. The results obtained indicate that a 100 mm(2) integrated circuit design of the proposed architecture, using a 65 nm technology, is able to achieve 464 GFLOPs (double precision floating-point) for a memory bandwidth of 16 GB/s. This corresponds to a performance efficiency of 71 %. Considering a 45 nm technology, a 100 mm(2) chip attains 833 GFLOPs which corresponds to 84 % of peak performance These figures are better than those obtained by previous many-core architectures, except for the area efficiency which is limited by the lower memory bandwidth considered. The results achieved are also better than those of previous state-of-the-art many-cores architectures designed specifically to achieve high performance for matrix multiplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive antenna array combines the signal of each element, using some constraints to produce the radiation pattern of the antenna, while maximizing the performance of the system. Direction of arrival (DOA) algorithms are applied to determine the directions of impinging signals, whereas beamforming techniques are employed to determine the appropriate weights for the array elements, to create the desired pattern. In this paper, a detailed analysis of both categories of algorithms is made, when a planar antenna array is used. Several simulation results show that it is possible to point an antenna array in a desired direction based on the DOA estimation and on the beamforming algorithms. A comparison of the performance in terms of runtime and accuracy of the used algorithms is made. These characteristics are dependent on the SNR of the incoming signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.