19 resultados para acid oil (AO)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Origanum glandulosum Desf. (Species endemic of North Africa: Tunisia and Algeria) is important medicinally as it has antimicrobial, antifungal, antioxidant, antibacterial, antithrombin, antimutagenic, angiogenic, antiparasetic and antihyperglycaemic activities. Phytochemical investigations of the species of this genus have resulted in the extraction of a number of important bioactive compounds. This emphasizes on the need of extensive study for reporting the additional information on the medicinal importance, the biological activities and properties of oil of other unattended species of Origanum glandulosum. © 2015 Springer-Verlag France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reuse of waste fluid catalytic cracking (FCC) catalyst as partial surrogate for cement can reduce the environmental impact of both the oil-refinery and cement production industries [1,2]. FCC catalysts can be considered as pozzolanic materials since in the presence of water they tend to chemically react with calcium hydroxide to produce compounds possessing cementitious properties [3,4]. In addition, partial replacement of cement with FCC catalysts can enhance the performance of pastes and mortars, namely by improving their compressive strength [5,6]. In the present work the reaction of waste FCC catalyst with Ca(OH)2 has been investigated after a curing time of 28 days by scanning electron microscopy (SEM) with electron backscattered signal (BSE) combined with X-ray energy dispersive spectroscopy (EDS) carried out with a JEOL JSM 7001F instrument operated at 15 kV coupled to an INCA pentaFetx3 Oxford spectrometer. The polished cross-sections of FCC particles embedded in resin have also been evaluated by atomic force microscopy (AFM) in contact mode (CM) using a NanoSurf EasyScan 2 instrument. The SEM/EDS results revealed that an inward migration of Ca occurred during the reaction. A weaker outward migration of Si and Al was also apparent (Fig. 1). The migration of Ca was not homogeneous and tended to follow high-diffusivity paths within the porous waste FCC catalyst particles. The present study suggests that the porosity of waste FCC catalysts is key for the migration/reaction of Ca from the surrounding matrix, playing an important role in the pozzolanic activity of the system. The topography images and surface roughness parameters obtained by atomic force microscopy can be used to infer the local porosity in waste FCC catalyst particles (Fig. 2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present paper present the main results obtained in the scope of an ongoing project which aims to contribute to the valorization of a waste generated by the Portuguese oil company in construction materials. This waste is an aluminosilicate with high pozzolanic reactivity. Several different technological applications had already been tested with success both in terms of properties and compliance with the corresponding standards specifications. Namely, this project results already demonstrated that this waste can be used in traditional concrete, self-compacted concrete, mortars (renders, masonry mortar, concrete repair mortars), cement main constituent as well as alkali activated binders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New ortho-substituted arylhydrazones of barbituric acid, 5-(2-(2-hydroxyphenyl)hydrazono) pyrimidine-2,4,6(1H,3H,5H)-trione (H4L1) and the sodium salt of 2-(2-(2,4,6-trioxotetra-hydropyrimidin-5(2H)-ylidene)hydrazinyl) benzenesulfonic acid (H4L2), [Na(H3L2)(mu-H2O)(H2O)(2)](2) (1), were used in the synthesis of Cu-II, Co-II and Co-II/III complexes, [Cu(H2L1)(H2O)(im)]center dot 3H(2)O (im = imidazole) (2), [Co(H2O)(6)] [Co(H2L1)(2)](2)center dot 8H(2)O (3), [Co(H2L2)(im)(3)] (4), [Cu(H2L2)(im)(2)]center dot H2O (5) and [Co(H2O)(6)][H3L2](2)center dot 8H(2)O (6). The complexes are water soluble and the mono-or di-deprotonated ligands display different coordination modes, depending on the synthetic conditions. The electrochemical behaviour of all the compounds was investigated by cyclic voltammetry and controlled potential electrolysis, revealing that the ligands are also redox active. All the compounds were evaluated as catalysts for the peroxidative (with H2O2) oxidation of cyclohexane at room temperature. The compounds 2 and 3 are the most active ones (yields up to 21% and TON up to 213 are achieved, in the presence of 3).