17 resultados para Thiobarbituric acid reactive substances (TBARS)
Resumo:
Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.
Resumo:
New ortho-substituted arylhydrazones of barbituric acid, 5-(2-(2-hydroxyphenyl)hydrazono) pyrimidine-2,4,6(1H,3H,5H)-trione (H4L1) and the sodium salt of 2-(2-(2,4,6-trioxotetra-hydropyrimidin-5(2H)-ylidene)hydrazinyl) benzenesulfonic acid (H4L2), [Na(H3L2)(mu-H2O)(H2O)(2)](2) (1), were used in the synthesis of Cu-II, Co-II and Co-II/III complexes, [Cu(H2L1)(H2O)(im)]center dot 3H(2)O (im = imidazole) (2), [Co(H2O)(6)] [Co(H2L1)(2)](2)center dot 8H(2)O (3), [Co(H2L2)(im)(3)] (4), [Cu(H2L2)(im)(2)]center dot H2O (5) and [Co(H2O)(6)][H3L2](2)center dot 8H(2)O (6). The complexes are water soluble and the mono-or di-deprotonated ligands display different coordination modes, depending on the synthetic conditions. The electrochemical behaviour of all the compounds was investigated by cyclic voltammetry and controlled potential electrolysis, revealing that the ligands are also redox active. All the compounds were evaluated as catalysts for the peroxidative (with H2O2) oxidation of cyclohexane at room temperature. The compounds 2 and 3 are the most active ones (yields up to 21% and TON up to 213 are achieved, in the presence of 3).